{"title":"基于最大后验方法的混合噪声边缘检测","authors":"Yuying Shi, Zi-peng Liu, Xiaoying Wang, Jinping Zhang","doi":"10.3934/IPI.2021035","DOIUrl":null,"url":null,"abstract":"Edge detection is an important problem in image processing, especially for mixed noise. In this work, we propose a variational edge detection model with mixed noise by using Maximum A-Posteriori (MAP) approach. The novel model is formed with the regularization terms and the data fidelity terms that feature different mixed noise. Furthermore, we adopt the alternating direction method of multipliers (ADMM) to solve the proposed model. Numerical experiments on a variety of gray and color images demonstrate the efficiency of the proposed model.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"219 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Edge detection with mixed noise based on maximum a posteriori approach\",\"authors\":\"Yuying Shi, Zi-peng Liu, Xiaoying Wang, Jinping Zhang\",\"doi\":\"10.3934/IPI.2021035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge detection is an important problem in image processing, especially for mixed noise. In this work, we propose a variational edge detection model with mixed noise by using Maximum A-Posteriori (MAP) approach. The novel model is formed with the regularization terms and the data fidelity terms that feature different mixed noise. Furthermore, we adopt the alternating direction method of multipliers (ADMM) to solve the proposed model. Numerical experiments on a variety of gray and color images demonstrate the efficiency of the proposed model.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"219 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/IPI.2021035\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/IPI.2021035","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Edge detection with mixed noise based on maximum a posteriori approach
Edge detection is an important problem in image processing, especially for mixed noise. In this work, we propose a variational edge detection model with mixed noise by using Maximum A-Posteriori (MAP) approach. The novel model is formed with the regularization terms and the data fidelity terms that feature different mixed noise. Furthermore, we adopt the alternating direction method of multipliers (ADMM) to solve the proposed model. Numerical experiments on a variety of gray and color images demonstrate the efficiency of the proposed model.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.