Junaidvali Shaik, Sankalp Tiwari, C. P. Vyasarayani
{"title":"用正交历史函数求解线性时间周期时滞微分方程的Floquet理论","authors":"Junaidvali Shaik, Sankalp Tiwari, C. P. Vyasarayani","doi":"10.1115/1.4062633","DOIUrl":null,"url":null,"abstract":"\n In the usual approach to determining the stability of a time-periodic delay differential equation (DDE), the DDE is converted into an approximate system of time-periodic ordinary differential equations (ODEs) using Galerkin approximations. Later, Floquet theory is applied to these ODEs. Alternatively, semi-discretization-like approaches can be used to construct an approximate Floquet transition matrix (FTM) for a DDE. In this paper, we develop a method to obtain the FTM directly. Our approach is analogous to the Floquet theory for ODEs: we consider one polynomial basis function at a time as the history function and stack the coefficients of the corresponding DDE solutions to construct the FTM. The largest magnitude eigenvalue of the FTM determines the stability of the DDE. Since the obtained FTM is an approximation of the actual infinite-dimensional FTM, the criterion developed for stability is approximate. We demonstrate the correctness and efficacy of our method by studying several candidate DDEs with time-periodic parameters and comparing the results with those obtained from the Galerkin approximations.","PeriodicalId":54858,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"28 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Floquet Theory for Linear Time-Periodic Delay Differential Equations Using Orthonormal History Functions\",\"authors\":\"Junaidvali Shaik, Sankalp Tiwari, C. P. Vyasarayani\",\"doi\":\"10.1115/1.4062633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the usual approach to determining the stability of a time-periodic delay differential equation (DDE), the DDE is converted into an approximate system of time-periodic ordinary differential equations (ODEs) using Galerkin approximations. Later, Floquet theory is applied to these ODEs. Alternatively, semi-discretization-like approaches can be used to construct an approximate Floquet transition matrix (FTM) for a DDE. In this paper, we develop a method to obtain the FTM directly. Our approach is analogous to the Floquet theory for ODEs: we consider one polynomial basis function at a time as the history function and stack the coefficients of the corresponding DDE solutions to construct the FTM. The largest magnitude eigenvalue of the FTM determines the stability of the DDE. Since the obtained FTM is an approximation of the actual infinite-dimensional FTM, the criterion developed for stability is approximate. We demonstrate the correctness and efficacy of our method by studying several candidate DDEs with time-periodic parameters and comparing the results with those obtained from the Galerkin approximations.\",\"PeriodicalId\":54858,\"journal\":{\"name\":\"Journal of Computational and Nonlinear Dynamics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Nonlinear Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062633\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062633","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Floquet Theory for Linear Time-Periodic Delay Differential Equations Using Orthonormal History Functions
In the usual approach to determining the stability of a time-periodic delay differential equation (DDE), the DDE is converted into an approximate system of time-periodic ordinary differential equations (ODEs) using Galerkin approximations. Later, Floquet theory is applied to these ODEs. Alternatively, semi-discretization-like approaches can be used to construct an approximate Floquet transition matrix (FTM) for a DDE. In this paper, we develop a method to obtain the FTM directly. Our approach is analogous to the Floquet theory for ODEs: we consider one polynomial basis function at a time as the history function and stack the coefficients of the corresponding DDE solutions to construct the FTM. The largest magnitude eigenvalue of the FTM determines the stability of the DDE. Since the obtained FTM is an approximation of the actual infinite-dimensional FTM, the criterion developed for stability is approximate. We demonstrate the correctness and efficacy of our method by studying several candidate DDEs with time-periodic parameters and comparing the results with those obtained from the Galerkin approximations.
期刊介绍:
The purpose of the Journal of Computational and Nonlinear Dynamics is to provide a medium for rapid dissemination of original research results in theoretical as well as applied computational and nonlinear dynamics. The journal serves as a forum for the exchange of new ideas and applications in computational, rigid and flexible multi-body system dynamics and all aspects (analytical, numerical, and experimental) of dynamics associated with nonlinear systems. The broad scope of the journal encompasses all computational and nonlinear problems occurring in aeronautical, biological, electrical, mechanical, physical, and structural systems.