纳米氧化锌异质结作为氢能和环境修复的可见光活性光催化剂

Suneel Kumar, Ajay Kumar, Ashish Kumar, V. Krishnan
{"title":"纳米氧化锌异质结作为氢能和环境修复的可见光活性光催化剂","authors":"Suneel Kumar, Ajay Kumar, Ashish Kumar, V. Krishnan","doi":"10.1080/01614940.2019.1684649","DOIUrl":null,"url":null,"abstract":"ABSTRACT In the recent years, zinc oxide has emerged as one of the promising alternate materials to titania for photocatalytic applications due to its several advantages properties. This review recapitulates the ongoing advancement in the field of ZnO-based heterojunctions as visible light responsive photocatalysts for energy conversion (hydrogen evolution) and environmental remediation (pollutants degradation) applications. After a short introduction about zinc oxide materials, the various approaches utilized in the design and development of efficient ZnO-based nanoheterostructures has been discussed in detail. Specifically, strategies such as coupling ZnO with other semiconductors, supporting on carbonaceous materials, decorating with noble metal nanoparticles, doping with heteroatoms and engineering defects in the semiconductor material have been elaborated with a particular emphasis on hydrogen energy and organic pollutants removal. Finally, the future perspective of this material has been highlighted. This comprehensive review not only summarizes the recent literature in this topic, but also provides a detailed insight on the scope of this material for hydrogen energy and environmental remediation applications. Graphical Abstract","PeriodicalId":9647,"journal":{"name":"Catalysis Reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation\",\"authors\":\"Suneel Kumar, Ajay Kumar, Ashish Kumar, V. Krishnan\",\"doi\":\"10.1080/01614940.2019.1684649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In the recent years, zinc oxide has emerged as one of the promising alternate materials to titania for photocatalytic applications due to its several advantages properties. This review recapitulates the ongoing advancement in the field of ZnO-based heterojunctions as visible light responsive photocatalysts for energy conversion (hydrogen evolution) and environmental remediation (pollutants degradation) applications. After a short introduction about zinc oxide materials, the various approaches utilized in the design and development of efficient ZnO-based nanoheterostructures has been discussed in detail. Specifically, strategies such as coupling ZnO with other semiconductors, supporting on carbonaceous materials, decorating with noble metal nanoparticles, doping with heteroatoms and engineering defects in the semiconductor material have been elaborated with a particular emphasis on hydrogen energy and organic pollutants removal. Finally, the future perspective of this material has been highlighted. This comprehensive review not only summarizes the recent literature in this topic, but also provides a detailed insight on the scope of this material for hydrogen energy and environmental remediation applications. Graphical Abstract\",\"PeriodicalId\":9647,\"journal\":{\"name\":\"Catalysis Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01614940.2019.1684649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01614940.2019.1684649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

近年来,氧化锌因其多种优异的性能而成为二氧化钛光催化应用的理想替代材料之一。本文综述了zno基异质结作为可见光响应光催化剂在能量转化(析氢)和环境修复(污染物降解)方面的最新进展。在简要介绍氧化锌材料之后,详细讨论了设计和开发高效氧化锌基纳米异质结构所采用的各种方法。具体而言,本文阐述了ZnO与其他半导体的耦合、碳质材料的支撑、贵金属纳米粒子的修饰、杂原子的掺杂以及半导体材料的工程缺陷等策略,并特别强调了氢能和有机污染物的去除。最后,对该材料的未来前景进行了展望。本文不仅对近年来有关该主题的文献进行了综述,而且对该材料在氢能和环境修复方面的应用范围进行了详细的介绍。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoscale zinc oxide based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation
ABSTRACT In the recent years, zinc oxide has emerged as one of the promising alternate materials to titania for photocatalytic applications due to its several advantages properties. This review recapitulates the ongoing advancement in the field of ZnO-based heterojunctions as visible light responsive photocatalysts for energy conversion (hydrogen evolution) and environmental remediation (pollutants degradation) applications. After a short introduction about zinc oxide materials, the various approaches utilized in the design and development of efficient ZnO-based nanoheterostructures has been discussed in detail. Specifically, strategies such as coupling ZnO with other semiconductors, supporting on carbonaceous materials, decorating with noble metal nanoparticles, doping with heteroatoms and engineering defects in the semiconductor material have been elaborated with a particular emphasis on hydrogen energy and organic pollutants removal. Finally, the future perspective of this material has been highlighted. This comprehensive review not only summarizes the recent literature in this topic, but also provides a detailed insight on the scope of this material for hydrogen energy and environmental remediation applications. Graphical Abstract
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信