Nasser M. Mahdy , Tsuyoshi Iizuka , Victoria Pease , Mohamed M. Ghoneim , Amr A. Abdel Hamid
{"title":"埃及东部沙漠含石榴石白岩浆的起源、动力学和化学演变:A 型岩浆中稀有金属富集的控制因素","authors":"Nasser M. Mahdy , Tsuyoshi Iizuka , Victoria Pease , Mohamed M. Ghoneim , Amr A. Abdel Hamid","doi":"10.1016/j.chemer.2023.126025","DOIUrl":null,"url":null,"abstract":"<div><p><span>Egypt hosts numerous rare-metal granites, i.e., highly evolved granites enriched in rare metals (Ta, Nb, Be, Sn, Zr, Th, and REE). However, the processes involved in the rare-metal enrichment are not fully understood. We present new data on the textural characteristics and chemical composition of rare-metal mineralization associated with microgranite dikes in the Ras Abdah area of the Egyptian Eastern Desert. These dikes are garnet-bearing </span>leucogranites<span><span> (GLG) composed of perthitic alkali-feldspars and quartz. When compared to other Egyptian A-type granites, microgranite dikes are alkaline rocks<span> with particularly higher HREE contents. Zircon<span>, huttonite, fergusonite (Y), and Fe-Ti-Zn oxides (magnetite, Zn-bearing ilmenite<span> and pyrophanite) are largely associated with the altered domains, which are also enriched in Nb, Zr, Y, Ta, Th, and REE. However, similarities between the chondrite-normalized REE patterns of the altered and unaltered domains of the GLG dikes favor the hypothesis of a unique magmatic signature. Moreover, the chemical and textural features of rare-metal minerals indicate that the alteration of primary minerals was caused by deuteric fluids or aqueous residual melt exsolved from the parental granitic </span></span></span></span>magma<span><span> (autometasomatism). Garnet compositions are rich in the spessartine component (up to 84 %), which is typical of </span>garnet in highly evolved pegmatitic rocks. Furthermore, garnet exhibits no major element zoning but shows chemical fluctuations in trace element concentrations, suggesting correspondingly abrupt changes in melt composition due to sequential magma pulsing. This magma emplacement may cause crystal nucleation and oscillatory crystallization followed by magmatic segregation. Overall, parental magma type, dike injection, and magmatic-hydrothermal processes all play a role in the unusual enrichments of rare metals.</span></span></p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"83 4","pages":"Article 126025"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin, dynamics, and chemical evolution of garnet-bearing leucogranitic magma, Eastern Desert of Egypt: Controls on the rare-metal enrichment in the A-type magmatism\",\"authors\":\"Nasser M. Mahdy , Tsuyoshi Iizuka , Victoria Pease , Mohamed M. Ghoneim , Amr A. Abdel Hamid\",\"doi\":\"10.1016/j.chemer.2023.126025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Egypt hosts numerous rare-metal granites, i.e., highly evolved granites enriched in rare metals (Ta, Nb, Be, Sn, Zr, Th, and REE). However, the processes involved in the rare-metal enrichment are not fully understood. We present new data on the textural characteristics and chemical composition of rare-metal mineralization associated with microgranite dikes in the Ras Abdah area of the Egyptian Eastern Desert. These dikes are garnet-bearing </span>leucogranites<span><span> (GLG) composed of perthitic alkali-feldspars and quartz. When compared to other Egyptian A-type granites, microgranite dikes are alkaline rocks<span> with particularly higher HREE contents. Zircon<span>, huttonite, fergusonite (Y), and Fe-Ti-Zn oxides (magnetite, Zn-bearing ilmenite<span> and pyrophanite) are largely associated with the altered domains, which are also enriched in Nb, Zr, Y, Ta, Th, and REE. However, similarities between the chondrite-normalized REE patterns of the altered and unaltered domains of the GLG dikes favor the hypothesis of a unique magmatic signature. Moreover, the chemical and textural features of rare-metal minerals indicate that the alteration of primary minerals was caused by deuteric fluids or aqueous residual melt exsolved from the parental granitic </span></span></span></span>magma<span><span> (autometasomatism). Garnet compositions are rich in the spessartine component (up to 84 %), which is typical of </span>garnet in highly evolved pegmatitic rocks. Furthermore, garnet exhibits no major element zoning but shows chemical fluctuations in trace element concentrations, suggesting correspondingly abrupt changes in melt composition due to sequential magma pulsing. This magma emplacement may cause crystal nucleation and oscillatory crystallization followed by magmatic segregation. Overall, parental magma type, dike injection, and magmatic-hydrothermal processes all play a role in the unusual enrichments of rare metals.</span></span></p></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"83 4\",\"pages\":\"Article 126025\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281923000764\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281923000764","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Origin, dynamics, and chemical evolution of garnet-bearing leucogranitic magma, Eastern Desert of Egypt: Controls on the rare-metal enrichment in the A-type magmatism
Egypt hosts numerous rare-metal granites, i.e., highly evolved granites enriched in rare metals (Ta, Nb, Be, Sn, Zr, Th, and REE). However, the processes involved in the rare-metal enrichment are not fully understood. We present new data on the textural characteristics and chemical composition of rare-metal mineralization associated with microgranite dikes in the Ras Abdah area of the Egyptian Eastern Desert. These dikes are garnet-bearing leucogranites (GLG) composed of perthitic alkali-feldspars and quartz. When compared to other Egyptian A-type granites, microgranite dikes are alkaline rocks with particularly higher HREE contents. Zircon, huttonite, fergusonite (Y), and Fe-Ti-Zn oxides (magnetite, Zn-bearing ilmenite and pyrophanite) are largely associated with the altered domains, which are also enriched in Nb, Zr, Y, Ta, Th, and REE. However, similarities between the chondrite-normalized REE patterns of the altered and unaltered domains of the GLG dikes favor the hypothesis of a unique magmatic signature. Moreover, the chemical and textural features of rare-metal minerals indicate that the alteration of primary minerals was caused by deuteric fluids or aqueous residual melt exsolved from the parental granitic magma (autometasomatism). Garnet compositions are rich in the spessartine component (up to 84 %), which is typical of garnet in highly evolved pegmatitic rocks. Furthermore, garnet exhibits no major element zoning but shows chemical fluctuations in trace element concentrations, suggesting correspondingly abrupt changes in melt composition due to sequential magma pulsing. This magma emplacement may cause crystal nucleation and oscillatory crystallization followed by magmatic segregation. Overall, parental magma type, dike injection, and magmatic-hydrothermal processes all play a role in the unusual enrichments of rare metals.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry