{"title":"利用 DFT 方法阐明氢键配位金属络合物烟酸镉的光谱并进行分子对接分析","authors":"","doi":"10.1080/10406638.2023.2244629","DOIUrl":null,"url":null,"abstract":"<div><p>The geometry optimization, natural bond orbital analysis, and vibrational analysis of Cadmium Nicotinate (CdN) were performed using the density functional B3LYP level with a LANL2DZ basis set. Transfer of electrons from the lone pair oxygen in COO<sup>−</sup> to the antibonding orbital of the O-H bond results in the formation of hydrogen bonds, which results in the most interesting biological properties, according to natural bond orbital analysis. The red shift in wavenumber has been confirmed by intramolecular O-H…O hydrogen bonding interactions and the water group coordinated to the central metal cadmium <em>via</em> oxygen atoms. UV spectral analysis, on the other hand, reveals the n→π* transition due to its strong peak in absorption spectra, demonstrating its biological activity. The MEP and Fukui Functions are used to represent the molecule’s reactive region, which remains more electrophilic around the oxygen atoms. DOS spectral analysis is used to investigate the molecular orbital contributions. The Electron Localization Function (ELF) and the Local orbital locator (LOL) were used to conduct topological studies on CdN. To investigate distinct covalent and non-covalent interactions, Hirshfeld surface analysis and reduced density gradient analysis were used. Molecular docking studies were used to investigate ligand-protein interactions and ADME parameter analysis and the Lipinski rule for the CdN molecule confirmed that the compound has good drug-like properties and could be developed as an antifungal drug in the future.</p></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Elucidations and Molecular Docking Analysis of Hydrogen Bonded Coordination Metal Complex Cadmium Nicotinate Using DFT Method\",\"authors\":\"\",\"doi\":\"10.1080/10406638.2023.2244629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The geometry optimization, natural bond orbital analysis, and vibrational analysis of Cadmium Nicotinate (CdN) were performed using the density functional B3LYP level with a LANL2DZ basis set. Transfer of electrons from the lone pair oxygen in COO<sup>−</sup> to the antibonding orbital of the O-H bond results in the formation of hydrogen bonds, which results in the most interesting biological properties, according to natural bond orbital analysis. The red shift in wavenumber has been confirmed by intramolecular O-H…O hydrogen bonding interactions and the water group coordinated to the central metal cadmium <em>via</em> oxygen atoms. UV spectral analysis, on the other hand, reveals the n→π* transition due to its strong peak in absorption spectra, demonstrating its biological activity. The MEP and Fukui Functions are used to represent the molecule’s reactive region, which remains more electrophilic around the oxygen atoms. DOS spectral analysis is used to investigate the molecular orbital contributions. The Electron Localization Function (ELF) and the Local orbital locator (LOL) were used to conduct topological studies on CdN. To investigate distinct covalent and non-covalent interactions, Hirshfeld surface analysis and reduced density gradient analysis were used. Molecular docking studies were used to investigate ligand-protein interactions and ADME parameter analysis and the Lipinski rule for the CdN molecule confirmed that the compound has good drug-like properties and could be developed as an antifungal drug in the future.</p></div>\",\"PeriodicalId\":20303,\"journal\":{\"name\":\"Polycyclic Aromatic Compounds\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polycyclic Aromatic Compounds\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1040663823019747\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1040663823019747","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Spectral Elucidations and Molecular Docking Analysis of Hydrogen Bonded Coordination Metal Complex Cadmium Nicotinate Using DFT Method
The geometry optimization, natural bond orbital analysis, and vibrational analysis of Cadmium Nicotinate (CdN) were performed using the density functional B3LYP level with a LANL2DZ basis set. Transfer of electrons from the lone pair oxygen in COO− to the antibonding orbital of the O-H bond results in the formation of hydrogen bonds, which results in the most interesting biological properties, according to natural bond orbital analysis. The red shift in wavenumber has been confirmed by intramolecular O-H…O hydrogen bonding interactions and the water group coordinated to the central metal cadmium via oxygen atoms. UV spectral analysis, on the other hand, reveals the n→π* transition due to its strong peak in absorption spectra, demonstrating its biological activity. The MEP and Fukui Functions are used to represent the molecule’s reactive region, which remains more electrophilic around the oxygen atoms. DOS spectral analysis is used to investigate the molecular orbital contributions. The Electron Localization Function (ELF) and the Local orbital locator (LOL) were used to conduct topological studies on CdN. To investigate distinct covalent and non-covalent interactions, Hirshfeld surface analysis and reduced density gradient analysis were used. Molecular docking studies were used to investigate ligand-protein interactions and ADME parameter analysis and the Lipinski rule for the CdN molecule confirmed that the compound has good drug-like properties and could be developed as an antifungal drug in the future.
期刊介绍:
The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.