A. Martinez, C. A. Pendeza Martinez, G. Bressan, R. M. Souza, E. W. Stiegelmeier
{"title":"一类六阶边值问题的多重解","authors":"A. Martinez, C. A. Pendeza Martinez, G. Bressan, R. M. Souza, E. W. Stiegelmeier","doi":"10.5540/TCAM.2021.022.01.00001","DOIUrl":null,"url":null,"abstract":"This work presents conditions for the existence of multiple solutions for a sixth order equation with homogeneous boundary conditions using Avery Peterson's theorem. In addition, non-trivial examples are presented and a new numerical method based on the Banach's Contraction Principle is introduced.","PeriodicalId":45147,"journal":{"name":"TeMA-Journal of Land Use Mobility and Environment","volume":"1 1","pages":"1-12"},"PeriodicalIF":1.0000,"publicationDate":"2021-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multiple Solutions for a Sixth Order Boundary Value Problem\",\"authors\":\"A. Martinez, C. A. Pendeza Martinez, G. Bressan, R. M. Souza, E. W. Stiegelmeier\",\"doi\":\"10.5540/TCAM.2021.022.01.00001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents conditions for the existence of multiple solutions for a sixth order equation with homogeneous boundary conditions using Avery Peterson's theorem. In addition, non-trivial examples are presented and a new numerical method based on the Banach's Contraction Principle is introduced.\",\"PeriodicalId\":45147,\"journal\":{\"name\":\"TeMA-Journal of Land Use Mobility and Environment\",\"volume\":\"1 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TeMA-Journal of Land Use Mobility and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5540/TCAM.2021.022.01.00001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"URBAN STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TeMA-Journal of Land Use Mobility and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5540/TCAM.2021.022.01.00001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"URBAN STUDIES","Score":null,"Total":0}
Multiple Solutions for a Sixth Order Boundary Value Problem
This work presents conditions for the existence of multiple solutions for a sixth order equation with homogeneous boundary conditions using Avery Peterson's theorem. In addition, non-trivial examples are presented and a new numerical method based on the Banach's Contraction Principle is introduced.