自主神经系统阻断下线性和非线性心肺相互作用的量化

C. Varon, Dries Hendrikx, J. Bolea, P. Laguna, R. Bailón
{"title":"自主神经系统阻断下线性和非线性心肺相互作用的量化","authors":"C. Varon, Dries Hendrikx, J. Bolea, P. Laguna, R. Bailón","doi":"10.23919/CinC49843.2019.9005628","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology to extract both linear and nonlinear respiratory influences from the heart rate variability (HRV), by decomposing the HRV into a respiratory and a residual component. This methodology is based on least-squares support vector machines (LS-SVM) formulated for nonlinear function estimation. From this decomposition, a better estimation of the respiratory sinus arrhythmia (RSA) and the sympathovagal balance (SB) can be achieved. These estimates are first analyzed during autonomic blockade and an orthostatic maneuver, and then compared against the classical HRV and a model that considers only linear interactions. Results are evaluated using surrogate data analysis and they indicate that the classical HRV and the linear model underestimate the cardiorespiratory interactions. Moreover, the linear and nonlinear interactions appear to be mediated by different control mechanisms. These findings will allow to better assess the ANS and to improve the understanding of the interactions within the cardiorespiratory system.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"9 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantification of Linear and Nonlinear Cardiorespiratory Interactions Under Autonomic Nervous System Blockade\",\"authors\":\"C. Varon, Dries Hendrikx, J. Bolea, P. Laguna, R. Bailón\",\"doi\":\"10.23919/CinC49843.2019.9005628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a methodology to extract both linear and nonlinear respiratory influences from the heart rate variability (HRV), by decomposing the HRV into a respiratory and a residual component. This methodology is based on least-squares support vector machines (LS-SVM) formulated for nonlinear function estimation. From this decomposition, a better estimation of the respiratory sinus arrhythmia (RSA) and the sympathovagal balance (SB) can be achieved. These estimates are first analyzed during autonomic blockade and an orthostatic maneuver, and then compared against the classical HRV and a model that considers only linear interactions. Results are evaluated using surrogate data analysis and they indicate that the classical HRV and the linear model underestimate the cardiorespiratory interactions. Moreover, the linear and nonlinear interactions appear to be mediated by different control mechanisms. These findings will allow to better assess the ANS and to improve the understanding of the interactions within the cardiorespiratory system.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"9 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种从心率变异性(HRV)中提取线性和非线性呼吸影响的方法,该方法将HRV分解为呼吸分量和残差分量。该方法基于非线性函数估计的最小二乘支持向量机(LS-SVM)。通过这种分解,可以更好地估计呼吸窦性心律失常(RSA)和交感病理迷走神经平衡(SB)。这些估计首先在自主神经阻滞和直立运动期间进行分析,然后与经典HRV和仅考虑线性相互作用的模型进行比较。使用替代数据分析对结果进行评估,结果表明经典HRV和线性模型低估了心肺相互作用。此外,线性和非线性相互作用似乎是由不同的控制机制介导的。这些发现将有助于更好地评估ANS,并提高对心肺系统内相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification of Linear and Nonlinear Cardiorespiratory Interactions Under Autonomic Nervous System Blockade
This paper proposes a methodology to extract both linear and nonlinear respiratory influences from the heart rate variability (HRV), by decomposing the HRV into a respiratory and a residual component. This methodology is based on least-squares support vector machines (LS-SVM) formulated for nonlinear function estimation. From this decomposition, a better estimation of the respiratory sinus arrhythmia (RSA) and the sympathovagal balance (SB) can be achieved. These estimates are first analyzed during autonomic blockade and an orthostatic maneuver, and then compared against the classical HRV and a model that considers only linear interactions. Results are evaluated using surrogate data analysis and they indicate that the classical HRV and the linear model underestimate the cardiorespiratory interactions. Moreover, the linear and nonlinear interactions appear to be mediated by different control mechanisms. These findings will allow to better assess the ANS and to improve the understanding of the interactions within the cardiorespiratory system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信