C. Varon, Dries Hendrikx, J. Bolea, P. Laguna, R. Bailón
{"title":"自主神经系统阻断下线性和非线性心肺相互作用的量化","authors":"C. Varon, Dries Hendrikx, J. Bolea, P. Laguna, R. Bailón","doi":"10.23919/CinC49843.2019.9005628","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology to extract both linear and nonlinear respiratory influences from the heart rate variability (HRV), by decomposing the HRV into a respiratory and a residual component. This methodology is based on least-squares support vector machines (LS-SVM) formulated for nonlinear function estimation. From this decomposition, a better estimation of the respiratory sinus arrhythmia (RSA) and the sympathovagal balance (SB) can be achieved. These estimates are first analyzed during autonomic blockade and an orthostatic maneuver, and then compared against the classical HRV and a model that considers only linear interactions. Results are evaluated using surrogate data analysis and they indicate that the classical HRV and the linear model underestimate the cardiorespiratory interactions. Moreover, the linear and nonlinear interactions appear to be mediated by different control mechanisms. These findings will allow to better assess the ANS and to improve the understanding of the interactions within the cardiorespiratory system.","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"9 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantification of Linear and Nonlinear Cardiorespiratory Interactions Under Autonomic Nervous System Blockade\",\"authors\":\"C. Varon, Dries Hendrikx, J. Bolea, P. Laguna, R. Bailón\",\"doi\":\"10.23919/CinC49843.2019.9005628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a methodology to extract both linear and nonlinear respiratory influences from the heart rate variability (HRV), by decomposing the HRV into a respiratory and a residual component. This methodology is based on least-squares support vector machines (LS-SVM) formulated for nonlinear function estimation. From this decomposition, a better estimation of the respiratory sinus arrhythmia (RSA) and the sympathovagal balance (SB) can be achieved. These estimates are first analyzed during autonomic blockade and an orthostatic maneuver, and then compared against the classical HRV and a model that considers only linear interactions. Results are evaluated using surrogate data analysis and they indicate that the classical HRV and the linear model underestimate the cardiorespiratory interactions. Moreover, the linear and nonlinear interactions appear to be mediated by different control mechanisms. These findings will allow to better assess the ANS and to improve the understanding of the interactions within the cardiorespiratory system.\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"9 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantification of Linear and Nonlinear Cardiorespiratory Interactions Under Autonomic Nervous System Blockade
This paper proposes a methodology to extract both linear and nonlinear respiratory influences from the heart rate variability (HRV), by decomposing the HRV into a respiratory and a residual component. This methodology is based on least-squares support vector machines (LS-SVM) formulated for nonlinear function estimation. From this decomposition, a better estimation of the respiratory sinus arrhythmia (RSA) and the sympathovagal balance (SB) can be achieved. These estimates are first analyzed during autonomic blockade and an orthostatic maneuver, and then compared against the classical HRV and a model that considers only linear interactions. Results are evaluated using surrogate data analysis and they indicate that the classical HRV and the linear model underestimate the cardiorespiratory interactions. Moreover, the linear and nonlinear interactions appear to be mediated by different control mechanisms. These findings will allow to better assess the ANS and to improve the understanding of the interactions within the cardiorespiratory system.