人体烧伤皮肤检测系统

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Noor M. Abdulhadi, N. A. Ibraheem, M. Hasan
{"title":"人体烧伤皮肤检测系统","authors":"Noor M. Abdulhadi, N. A. Ibraheem, M. Hasan","doi":"10.14500/aro.10976","DOIUrl":null,"url":null,"abstract":"Early accurate burn depth diagnosis is crucial for selecting the appropriate clinical intervention strategies and assessing burn patient prognosis quality. However, with limited diagnostic accuracy, the current burn depth diagnosis approach still primarily relies on the empirical subjective assessment of clinicians. With the quick development of artificial intelligence technology, integration of deep learning algorithms with image analysis technology can more accurately identify and evaluate the information in medical images. The objective of the work is to detect and classify burn area in medical images using an unsupervised deep learning algorithm. The main contribution is to developing computations using one of the deep learning algorithm. To demonstrate the effectiveness of the proposed framework, experiments are performed on the benchmark to evaluate system stability. The results indicate that, the proposed system is simple and suits real life applications. The system accuracy was 75%, when compared with some of the state-of-the-art techniques.","PeriodicalId":8398,"journal":{"name":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Burning Skin Detection System in Human Body\",\"authors\":\"Noor M. Abdulhadi, N. A. Ibraheem, M. Hasan\",\"doi\":\"10.14500/aro.10976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early accurate burn depth diagnosis is crucial for selecting the appropriate clinical intervention strategies and assessing burn patient prognosis quality. However, with limited diagnostic accuracy, the current burn depth diagnosis approach still primarily relies on the empirical subjective assessment of clinicians. With the quick development of artificial intelligence technology, integration of deep learning algorithms with image analysis technology can more accurately identify and evaluate the information in medical images. The objective of the work is to detect and classify burn area in medical images using an unsupervised deep learning algorithm. The main contribution is to developing computations using one of the deep learning algorithm. To demonstrate the effectiveness of the proposed framework, experiments are performed on the benchmark to evaluate system stability. The results indicate that, the proposed system is simple and suits real life applications. The system accuracy was 75%, when compared with some of the state-of-the-art techniques.\",\"PeriodicalId\":8398,\"journal\":{\"name\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14500/aro.10976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14500/aro.10976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

早期准确的烧伤深度诊断对于选择合适的临床干预策略和评估烧伤患者预后质量至关重要。然而,由于诊断准确性有限,目前的烧伤深度诊断方法仍然主要依赖于临床医生的经验主观评估。随着人工智能技术的快速发展,将深度学习算法与图像分析技术相结合,可以更准确地识别和评估医学图像中的信息。该工作的目的是使用无监督深度学习算法检测和分类医学图像中的烧伤区域。主要贡献是开发使用深度学习算法之一的计算。为了证明所提出的框架的有效性,在基准上进行了实验,以评估系统的稳定性。结果表明,该系统结构简单,适合实际应用。与一些最先进的技术相比,该系统的准确率为75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Burning Skin Detection System in Human Body
Early accurate burn depth diagnosis is crucial for selecting the appropriate clinical intervention strategies and assessing burn patient prognosis quality. However, with limited diagnostic accuracy, the current burn depth diagnosis approach still primarily relies on the empirical subjective assessment of clinicians. With the quick development of artificial intelligence technology, integration of deep learning algorithms with image analysis technology can more accurately identify and evaluate the information in medical images. The objective of the work is to detect and classify burn area in medical images using an unsupervised deep learning algorithm. The main contribution is to developing computations using one of the deep learning algorithm. To demonstrate the effectiveness of the proposed framework, experiments are performed on the benchmark to evaluate system stability. The results indicate that, the proposed system is simple and suits real life applications. The system accuracy was 75%, when compared with some of the state-of-the-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY
ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY MULTIDISCIPLINARY SCIENCES-
自引率
33.30%
发文量
33
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信