斜李代数的李导幂的有限生成

IF 0.4 4区 数学 Q4 MATHEMATICS
A. Alahmadi, Fawziah Alharthi
{"title":"斜李代数的李导幂的有限生成","authors":"A. Alahmadi, Fawziah Alharthi","doi":"10.1142/s1005386722000177","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a finitely generated associative algebra over a field of characteristic different from 2. Herstein asked when the Lie algebra [Formula: see text] is finitely generated. Recently, it was shown that for a finitely generated nil algebra [Formula: see text] all derived powers of [Formula: see text] are finitely generated Lie algebras. Let [Formula: see text] be the Lie algebra of skew-symmetric elements of an associative algebra with involution. We consider all derived powers of the Lie algebra [Formula: see text] and prove that for any finitely generated associative nil algebra with an involution, all derived powers of [Formula: see text] are finitely generated Lie algebras.","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"71 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Generation of Lie Derived Powers of Skew Lie Algebras\",\"authors\":\"A. Alahmadi, Fawziah Alharthi\",\"doi\":\"10.1142/s1005386722000177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a finitely generated associative algebra over a field of characteristic different from 2. Herstein asked when the Lie algebra [Formula: see text] is finitely generated. Recently, it was shown that for a finitely generated nil algebra [Formula: see text] all derived powers of [Formula: see text] are finitely generated Lie algebras. Let [Formula: see text] be the Lie algebra of skew-symmetric elements of an associative algebra with involution. We consider all derived powers of the Lie algebra [Formula: see text] and prove that for any finitely generated associative nil algebra with an involution, all derived powers of [Formula: see text] are finitely generated Lie algebras.\",\"PeriodicalId\":50958,\"journal\":{\"name\":\"Algebra Colloquium\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra Colloquium\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1005386722000177\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000177","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文本]为特征值不同于2的域上有限生成的关联代数。Herstein问什么时候李代数[公式:见文本]是有限生成的。最近,证明了对于有限生成的零代数[公式:见文],[公式:见文]的所有派生幂都是有限生成的李代数。设[公式:见文]为有对合的结合代数的偏对称元的李代数。我们考虑李代数[公式:见文]的所有派生幂,并证明了对于任何有对合的有限生成的结合零代数,[公式:见文]的所有派生幂都是有限生成的李代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Generation of Lie Derived Powers of Skew Lie Algebras
Let [Formula: see text] be a finitely generated associative algebra over a field of characteristic different from 2. Herstein asked when the Lie algebra [Formula: see text] is finitely generated. Recently, it was shown that for a finitely generated nil algebra [Formula: see text] all derived powers of [Formula: see text] are finitely generated Lie algebras. Let [Formula: see text] be the Lie algebra of skew-symmetric elements of an associative algebra with involution. We consider all derived powers of the Lie algebra [Formula: see text] and prove that for any finitely generated associative nil algebra with an involution, all derived powers of [Formula: see text] are finitely generated Lie algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信