模拟随机差分方程解决办法的多边形方法

Suliman M. Mahmoud, Ahmad Al-Wassouf, Ali S. Ehsaan Suliman M. Mahmoud, Ahmad Al-Wassouf, Ali S. Ehsaa
{"title":"模拟随机差分方程解决办法的多边形方法","authors":"Suliman M. Mahmoud, Ahmad Al-Wassouf, Ali S. Ehsaan Suliman M. Mahmoud, Ahmad Al-Wassouf, Ali S. Ehsaa","doi":"10.26389/ajsrp.l030621","DOIUrl":null,"url":null,"abstract":"In this paper, numerical spline method is presented with collocation two parameters for solving systems of multi-dimensional stochastic differential equations (SDEs). Multi-Wiener's time-continuous process is simulated as a discrete process, and then the mean-square stability of proposed method when applied to a system of two-dimensional linear SDEs is studied. The study shows that the method is mean-square stability and third-order convergent when applied to a system of linear and nonlinear SDEs. Moreover, the effectiveness of our method was tested by solving two test linear and non-linear problems. The numerical results show that the accuracy and applicability of the proposed method are worthy of attention.","PeriodicalId":16473,"journal":{"name":"Journal of natural sciences, life and applied sciences","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Spline Method for Simulation of Stochastic Differential Equations systems: طريقة شرائحية عددية لمحاكاة حل نظم من المعادلات التفاضلية العشوائية\",\"authors\":\"Suliman M. Mahmoud, Ahmad Al-Wassouf, Ali S. Ehsaan Suliman M. Mahmoud, Ahmad Al-Wassouf, Ali S. Ehsaa\",\"doi\":\"10.26389/ajsrp.l030621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, numerical spline method is presented with collocation two parameters for solving systems of multi-dimensional stochastic differential equations (SDEs). Multi-Wiener's time-continuous process is simulated as a discrete process, and then the mean-square stability of proposed method when applied to a system of two-dimensional linear SDEs is studied. The study shows that the method is mean-square stability and third-order convergent when applied to a system of linear and nonlinear SDEs. Moreover, the effectiveness of our method was tested by solving two test linear and non-linear problems. The numerical results show that the accuracy and applicability of the proposed method are worthy of attention.\",\"PeriodicalId\":16473,\"journal\":{\"name\":\"Journal of natural sciences, life and applied sciences\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of natural sciences, life and applied sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26389/ajsrp.l030621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of natural sciences, life and applied sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26389/ajsrp.l030621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了双参数配置的数值样条法求解多维随机微分方程系统。将多重维纳时间连续过程模拟为离散过程,研究了该方法应用于二维线性SDEs系统时的均方稳定性。研究表明,该方法具有均方稳定性和三阶收敛性,适用于线性和非线性SDEs系统。通过求解线性和非线性两个测试问题,验证了该方法的有效性。数值结果表明,该方法的准确性和适用性值得重视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Spline Method for Simulation of Stochastic Differential Equations systems: طريقة شرائحية عددية لمحاكاة حل نظم من المعادلات التفاضلية العشوائية
In this paper, numerical spline method is presented with collocation two parameters for solving systems of multi-dimensional stochastic differential equations (SDEs). Multi-Wiener's time-continuous process is simulated as a discrete process, and then the mean-square stability of proposed method when applied to a system of two-dimensional linear SDEs is studied. The study shows that the method is mean-square stability and third-order convergent when applied to a system of linear and nonlinear SDEs. Moreover, the effectiveness of our method was tested by solving two test linear and non-linear problems. The numerical results show that the accuracy and applicability of the proposed method are worthy of attention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信