Deepak Mishra, S. Chaudhury, M. Sarkar, Sidharth Manohar, A. Soin
{"title":"超声图像中血管区域分割:一种深度学习方法","authors":"Deepak Mishra, S. Chaudhury, M. Sarkar, Sidharth Manohar, A. Soin","doi":"10.1109/ISCAS.2018.8351049","DOIUrl":null,"url":null,"abstract":"Vascular region segmentation in ultrasound images is necessary for applications like automatic registration, and surgical navigation. In this paper, a pipelined network comprising of a convolutional neural network (CNN) followed by unsupervised clustering is proposed to perform vessel segmentation in liver ultrasound images. The work is motivated by the tremendous success of CNNs in object detection and localization. CNN here is trained to localize vascular regions, which are subsequently segmented by the clustering. The proposed network results in 99.14% pixel accuracy and 69.62% mean region intersection over union on 132 images. These values are better than some existing methods.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"2 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Segmentation of Vascular Regions in Ultrasound Images: A Deep Learning Approach\",\"authors\":\"Deepak Mishra, S. Chaudhury, M. Sarkar, Sidharth Manohar, A. Soin\",\"doi\":\"10.1109/ISCAS.2018.8351049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vascular region segmentation in ultrasound images is necessary for applications like automatic registration, and surgical navigation. In this paper, a pipelined network comprising of a convolutional neural network (CNN) followed by unsupervised clustering is proposed to perform vessel segmentation in liver ultrasound images. The work is motivated by the tremendous success of CNNs in object detection and localization. CNN here is trained to localize vascular regions, which are subsequently segmented by the clustering. The proposed network results in 99.14% pixel accuracy and 69.62% mean region intersection over union on 132 images. These values are better than some existing methods.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"2 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Segmentation of Vascular Regions in Ultrasound Images: A Deep Learning Approach
Vascular region segmentation in ultrasound images is necessary for applications like automatic registration, and surgical navigation. In this paper, a pipelined network comprising of a convolutional neural network (CNN) followed by unsupervised clustering is proposed to perform vessel segmentation in liver ultrasound images. The work is motivated by the tremendous success of CNNs in object detection and localization. CNN here is trained to localize vascular regions, which are subsequently segmented by the clustering. The proposed network results in 99.14% pixel accuracy and 69.62% mean region intersection over union on 132 images. These values are better than some existing methods.