Cathrine Mehus, V. Keerthivasan, T. Koløy, D. Young, Tore Sørheim
{"title":"具有延时功能的趾尖起裂滑套提高了海上NCS井的作业效率","authors":"Cathrine Mehus, V. Keerthivasan, T. Koløy, D. Young, Tore Sørheim","doi":"10.2118/206268-ms","DOIUrl":null,"url":null,"abstract":"\n A toe initiation sleeve is a tool installed in the toe of a completion liner and is used to establish a flowpath to the reservoir without the use of intervention. Conventional toe initiation sleeves require either intervention or increasing pressure to higher than the liner test pressure to activate. These methods have inherent cost and operational risks. This paper will present the development, qualification, and deployment of a multicycle, time-delay cementable toe initiation sleeve that allows for interventionless activation without exceeding the liner test pressure. This development greatly improves operational efficiency and eliminates risk associated with conventional toe initiation sleeves.\n A major operator in the North Sea required an ISO V0 rated toe initiation sleeve to be developed and qualified. Design criteria for the tool was identified, and the design was developed based on field-qualified seal technology. Individual component and full-scale validation testing was performed to complete the product qualification, followed by field trials in 2019. With its unique time-delay feature, the newly developed ATS (Advanced Toe Sleeve) allows for an unlimited number of pressure cycles to be performed while also keeping the well V0 barrier in place, and activates at below liner test pressure.\n This paper will discuss the technology development and implementation project, resulting in ISO 14998 V0-qualified cemented ATS being installed in nearly 40 wells in the same field. This paper will also provide insight into how the ATS provides unique benefits to the operator during various phases of the well's life.\n Cementing: One moving part and opening sleeve isolated from the inside diameter (ID) allow for pumping darts through the ATS without the risk of opening Setting liner/testing liner: Time-delay features allow for setting liner and testing the liner at higher pressures than ATS opening pressure. Well cleanup/displacing to lower density fluid: Time-delay function allows for opening the ATS at lower pressure than the well has seen during previous operations. Completion: ATS design and qualification grade reduce completion steps and costs for the operator. Stimulation: ATS eliminates the need for intervention, reducing the operational steps and costs for the operator.\n The advanced toe sleeve with built-in time-delay features maintains the liner integrity throughout the various well operations. The number of available pressure cycles can be predetermined, and the activation of the various cycles can be precisely controlled thereby also controlling when the tool is activated to achieve injectivity. This paper will present the development and field-wide implementation of the ATS technology, which has rapidly gained operator acceptance and resulted in significant time and cost savings.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toe Initiation Sleeve With Time-Delay Functionality Improves Operational Efficiency of Offshore NCS Wells\",\"authors\":\"Cathrine Mehus, V. Keerthivasan, T. Koløy, D. Young, Tore Sørheim\",\"doi\":\"10.2118/206268-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A toe initiation sleeve is a tool installed in the toe of a completion liner and is used to establish a flowpath to the reservoir without the use of intervention. Conventional toe initiation sleeves require either intervention or increasing pressure to higher than the liner test pressure to activate. These methods have inherent cost and operational risks. This paper will present the development, qualification, and deployment of a multicycle, time-delay cementable toe initiation sleeve that allows for interventionless activation without exceeding the liner test pressure. This development greatly improves operational efficiency and eliminates risk associated with conventional toe initiation sleeves.\\n A major operator in the North Sea required an ISO V0 rated toe initiation sleeve to be developed and qualified. Design criteria for the tool was identified, and the design was developed based on field-qualified seal technology. Individual component and full-scale validation testing was performed to complete the product qualification, followed by field trials in 2019. With its unique time-delay feature, the newly developed ATS (Advanced Toe Sleeve) allows for an unlimited number of pressure cycles to be performed while also keeping the well V0 barrier in place, and activates at below liner test pressure.\\n This paper will discuss the technology development and implementation project, resulting in ISO 14998 V0-qualified cemented ATS being installed in nearly 40 wells in the same field. This paper will also provide insight into how the ATS provides unique benefits to the operator during various phases of the well's life.\\n Cementing: One moving part and opening sleeve isolated from the inside diameter (ID) allow for pumping darts through the ATS without the risk of opening Setting liner/testing liner: Time-delay features allow for setting liner and testing the liner at higher pressures than ATS opening pressure. Well cleanup/displacing to lower density fluid: Time-delay function allows for opening the ATS at lower pressure than the well has seen during previous operations. Completion: ATS design and qualification grade reduce completion steps and costs for the operator. Stimulation: ATS eliminates the need for intervention, reducing the operational steps and costs for the operator.\\n The advanced toe sleeve with built-in time-delay features maintains the liner integrity throughout the various well operations. The number of available pressure cycles can be predetermined, and the activation of the various cycles can be precisely controlled thereby also controlling when the tool is activated to achieve injectivity. This paper will present the development and field-wide implementation of the ATS technology, which has rapidly gained operator acceptance and resulted in significant time and cost savings.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206268-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206268-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toe Initiation Sleeve With Time-Delay Functionality Improves Operational Efficiency of Offshore NCS Wells
A toe initiation sleeve is a tool installed in the toe of a completion liner and is used to establish a flowpath to the reservoir without the use of intervention. Conventional toe initiation sleeves require either intervention or increasing pressure to higher than the liner test pressure to activate. These methods have inherent cost and operational risks. This paper will present the development, qualification, and deployment of a multicycle, time-delay cementable toe initiation sleeve that allows for interventionless activation without exceeding the liner test pressure. This development greatly improves operational efficiency and eliminates risk associated with conventional toe initiation sleeves.
A major operator in the North Sea required an ISO V0 rated toe initiation sleeve to be developed and qualified. Design criteria for the tool was identified, and the design was developed based on field-qualified seal technology. Individual component and full-scale validation testing was performed to complete the product qualification, followed by field trials in 2019. With its unique time-delay feature, the newly developed ATS (Advanced Toe Sleeve) allows for an unlimited number of pressure cycles to be performed while also keeping the well V0 barrier in place, and activates at below liner test pressure.
This paper will discuss the technology development and implementation project, resulting in ISO 14998 V0-qualified cemented ATS being installed in nearly 40 wells in the same field. This paper will also provide insight into how the ATS provides unique benefits to the operator during various phases of the well's life.
Cementing: One moving part and opening sleeve isolated from the inside diameter (ID) allow for pumping darts through the ATS without the risk of opening Setting liner/testing liner: Time-delay features allow for setting liner and testing the liner at higher pressures than ATS opening pressure. Well cleanup/displacing to lower density fluid: Time-delay function allows for opening the ATS at lower pressure than the well has seen during previous operations. Completion: ATS design and qualification grade reduce completion steps and costs for the operator. Stimulation: ATS eliminates the need for intervention, reducing the operational steps and costs for the operator.
The advanced toe sleeve with built-in time-delay features maintains the liner integrity throughout the various well operations. The number of available pressure cycles can be predetermined, and the activation of the various cycles can be precisely controlled thereby also controlling when the tool is activated to achieve injectivity. This paper will present the development and field-wide implementation of the ATS technology, which has rapidly gained operator acceptance and resulted in significant time and cost savings.