热和辐射老化对交联聚乙烯化学结构和力学性能的影响

Yuya Miyazaki, N. Hirai, Y. Ohki
{"title":"热和辐射老化对交联聚乙烯化学结构和力学性能的影响","authors":"Yuya Miyazaki, N. Hirai, Y. Ohki","doi":"10.1109/ICD46958.2020.9341944","DOIUrl":null,"url":null,"abstract":"The degradation behavior of cross-linked polyethylene (XLPE) exposed to heat and radiation was investigated, focusing on its changes in chemical structure and mechanical properties. Infrared absorption spectroscopy (FT-IR), differential scanning calorimetry (DSC), and tensile tests were conducted. At the aging condition becomes more severe, the absorption due to carbonyl groups increases. In accord with this, the elongation at break decreases exponentially, while the enthalpy of fusion due to the melting of crystals decreases. When XLPE is exposed to heat and radiation, it is oxidized, which lowers the crystallinity and makes the crystals smaller. As a result, the mechanical properties of XLPE become degraded.","PeriodicalId":6795,"journal":{"name":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","volume":"21 1","pages":"45-48"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in Chemical Structure and Mechanical Properties Induced in Cross-linked Polyethylene by Thermal and Radiation Aging\",\"authors\":\"Yuya Miyazaki, N. Hirai, Y. Ohki\",\"doi\":\"10.1109/ICD46958.2020.9341944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degradation behavior of cross-linked polyethylene (XLPE) exposed to heat and radiation was investigated, focusing on its changes in chemical structure and mechanical properties. Infrared absorption spectroscopy (FT-IR), differential scanning calorimetry (DSC), and tensile tests were conducted. At the aging condition becomes more severe, the absorption due to carbonyl groups increases. In accord with this, the elongation at break decreases exponentially, while the enthalpy of fusion due to the melting of crystals decreases. When XLPE is exposed to heat and radiation, it is oxidized, which lowers the crystallinity and makes the crystals smaller. As a result, the mechanical properties of XLPE become degraded.\",\"PeriodicalId\":6795,\"journal\":{\"name\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"volume\":\"21 1\",\"pages\":\"45-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 3rd International Conference on Dielectrics (ICD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICD46958.2020.9341944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 3rd International Conference on Dielectrics (ICD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICD46958.2020.9341944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了交联聚乙烯(XLPE)在热辐射作用下的降解行为,重点研究了其化学结构和力学性能的变化。进行了红外吸收光谱(FT-IR)、差示扫描量热法(DSC)和拉伸试验。随着老化情况的加重,羰基的吸收增加。与此相一致的是,断裂伸长率呈指数下降,而晶体熔化引起的熔合焓降低。当XLPE暴露在热和辐射下时,它被氧化,这降低了结晶度,使晶体变小。结果,XLPE的力学性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Changes in Chemical Structure and Mechanical Properties Induced in Cross-linked Polyethylene by Thermal and Radiation Aging
The degradation behavior of cross-linked polyethylene (XLPE) exposed to heat and radiation was investigated, focusing on its changes in chemical structure and mechanical properties. Infrared absorption spectroscopy (FT-IR), differential scanning calorimetry (DSC), and tensile tests were conducted. At the aging condition becomes more severe, the absorption due to carbonyl groups increases. In accord with this, the elongation at break decreases exponentially, while the enthalpy of fusion due to the melting of crystals decreases. When XLPE is exposed to heat and radiation, it is oxidized, which lowers the crystallinity and makes the crystals smaller. As a result, the mechanical properties of XLPE become degraded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信