图作为莫尔斯-伯特函数或圆函数的Reeb图的实现

Pub Date : 2022-04-01 DOI:10.1556/012.2022.01512
Irina Gelbukh
{"title":"图作为莫尔斯-伯特函数或圆函数的Reeb图的实现","authors":"Irina Gelbukh","doi":"10.1556/012.2022.01512","DOIUrl":null,"url":null,"abstract":"We prove criteria for a graph to be the Reeb graph of a function of a given class on a closed manifold: Morse–Bott, round, and in general smooth functions whose critical set consists of a finite number of submanifolds. The criteria are given in terms of whether the graph admits an orientation, which we call S-good orientation, with certain conditions on the degree of sources and sinks, similar to the known notion of good orientation in the context of Morse functions. We also study when such a function is the height function associated with an immersion of the manifold. The condition for a graph to admit an S-good orientation can be expressed in terms of the leaf blocks of the graph.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Realization of a Graph as the Reeb Graph of a Morse–Bott or a Round Function\",\"authors\":\"Irina Gelbukh\",\"doi\":\"10.1556/012.2022.01512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove criteria for a graph to be the Reeb graph of a function of a given class on a closed manifold: Morse–Bott, round, and in general smooth functions whose critical set consists of a finite number of submanifolds. The criteria are given in terms of whether the graph admits an orientation, which we call S-good orientation, with certain conditions on the degree of sources and sinks, similar to the known notion of good orientation in the context of Morse functions. We also study when such a function is the height function associated with an immersion of the manifold. The condition for a graph to admit an S-good orientation can be expressed in terms of the leaf blocks of the graph.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2022.01512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2022.01512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们证明了图是闭流形上给定类函数的Reeb图的判据:Morse-Bott、圆函数和一般光滑函数,其临界集由有限个子流形组成。这些准则是根据图是否允许取向给出的,我们称之为s -良好取向,具有一定的源和吸收程度的条件,类似于已知的莫尔斯函数中良好取向的概念。我们还研究了当这样的函数是与流形浸入相关的高度函数时。图具有S-good取向的条件可以用图的叶块来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Realization of a Graph as the Reeb Graph of a Morse–Bott or a Round Function
We prove criteria for a graph to be the Reeb graph of a function of a given class on a closed manifold: Morse–Bott, round, and in general smooth functions whose critical set consists of a finite number of submanifolds. The criteria are given in terms of whether the graph admits an orientation, which we call S-good orientation, with certain conditions on the degree of sources and sinks, similar to the known notion of good orientation in the context of Morse functions. We also study when such a function is the height function associated with an immersion of the manifold. The condition for a graph to admit an S-good orientation can be expressed in terms of the leaf blocks of the graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信