{"title":"非线性几何固体力学问题中结构临界荷载的修正能量法研究","authors":"Ahmad Razaghi, J. A. Marnani, M. S. Rohanimanesh","doi":"10.1515/nleng-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract Geometrically nonlinear analysis is required for resolving issues such as loading causes failure and structure buckling analysis. Although numerical methods are recommended for estimating the exact solution, they lack the necessary convergence in the presence of bifurcation points, making it challenging to find the equilibrium path using these methods. Thus, the modified energy method is employed instead of the numerical method, frequently used to solve quasi-static problems with nonlinear nature and bifurcation points. The ultimate goal of this study is to determine the critical load of structures through the modified energy method rather than other methods in which the relationship between force, displacement, and constraint is used to solve the problem. This study first describes the energy method for this type of problem and then details its computational steps progressively. This method yields numerical results when applied to numerical examples such as truss and frame structures and coded in MATLAB software. These findings are compared to the analytical results. The energy method is more precise than the alternative methods and superior to the Newton–Raphson method at crossing the load–displacement curve’s bifurcation points.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of critical load of structures using modified energy method in nonlinear-geometry solid mechanics problems\",\"authors\":\"Ahmad Razaghi, J. A. Marnani, M. S. Rohanimanesh\",\"doi\":\"10.1515/nleng-2022-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Geometrically nonlinear analysis is required for resolving issues such as loading causes failure and structure buckling analysis. Although numerical methods are recommended for estimating the exact solution, they lack the necessary convergence in the presence of bifurcation points, making it challenging to find the equilibrium path using these methods. Thus, the modified energy method is employed instead of the numerical method, frequently used to solve quasi-static problems with nonlinear nature and bifurcation points. The ultimate goal of this study is to determine the critical load of structures through the modified energy method rather than other methods in which the relationship between force, displacement, and constraint is used to solve the problem. This study first describes the energy method for this type of problem and then details its computational steps progressively. This method yields numerical results when applied to numerical examples such as truss and frame structures and coded in MATLAB software. These findings are compared to the analytical results. The energy method is more precise than the alternative methods and superior to the Newton–Raphson method at crossing the load–displacement curve’s bifurcation points.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Investigation of critical load of structures using modified energy method in nonlinear-geometry solid mechanics problems
Abstract Geometrically nonlinear analysis is required for resolving issues such as loading causes failure and structure buckling analysis. Although numerical methods are recommended for estimating the exact solution, they lack the necessary convergence in the presence of bifurcation points, making it challenging to find the equilibrium path using these methods. Thus, the modified energy method is employed instead of the numerical method, frequently used to solve quasi-static problems with nonlinear nature and bifurcation points. The ultimate goal of this study is to determine the critical load of structures through the modified energy method rather than other methods in which the relationship between force, displacement, and constraint is used to solve the problem. This study first describes the energy method for this type of problem and then details its computational steps progressively. This method yields numerical results when applied to numerical examples such as truss and frame structures and coded in MATLAB software. These findings are compared to the analytical results. The energy method is more precise than the alternative methods and superior to the Newton–Raphson method at crossing the load–displacement curve’s bifurcation points.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.