{"title":"个人防护装备用纤维和纺织品:最新进展综述及未来发展展望","authors":"P. Dolez, Sabrina Marsha, R. McQueen","doi":"10.3390/textiles2020020","DOIUrl":null,"url":null,"abstract":"This article reviews recent developments in fibers and textiles for Personal Protective Equipment (PPE) applications. Fibers are grouped into six categories: highly extensible elastomeric fibers, cellulose-based fibers, commodity synthetic fibers, high strength inorganic materials, and high performance polymer fibers. New developments with highly extensible elastomeric fibers include polyester-based elastic fibers and shape memory polyurethane. In the case of cellulose-based fibers, environmentally friendly processes and nanotechnology-enabling treatments are developed for natural fibers where attempts are made to transfer interesting attributes of the feedstock to regenerated cellulose fibers. Commodity synthetic fibers comprise polyolefins, polyester, and polyamide; they have seen recent developments in terms of surface functionalization and the formation of structures at the nanoscale. In terms of high strength inorganic materials, basalt fibers and carbonaceous materials have found increased use in PPE. Boron is also generating considerable interest for fibers and coatings. Research on high-performance polymer fibers includes further improving their short- and long-term performance, moving to the nanoscale for new functionalities, and exploring their recyclability. An additional section describes a series of special textile structures relevant to PPE involving 3D textile structures, auxetic textile structures, shear thickening fabrics, nanoporous structures, phase change materials, and some specially designed textile-based composite structures for improved protection against mechanical hazards. The article ends with some perspectives on promising avenues for further developments.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fibers and Textiles for Personal Protective Equipment: Review of Recent Progress and Perspectives on Future Developments\",\"authors\":\"P. Dolez, Sabrina Marsha, R. McQueen\",\"doi\":\"10.3390/textiles2020020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article reviews recent developments in fibers and textiles for Personal Protective Equipment (PPE) applications. Fibers are grouped into six categories: highly extensible elastomeric fibers, cellulose-based fibers, commodity synthetic fibers, high strength inorganic materials, and high performance polymer fibers. New developments with highly extensible elastomeric fibers include polyester-based elastic fibers and shape memory polyurethane. In the case of cellulose-based fibers, environmentally friendly processes and nanotechnology-enabling treatments are developed for natural fibers where attempts are made to transfer interesting attributes of the feedstock to regenerated cellulose fibers. Commodity synthetic fibers comprise polyolefins, polyester, and polyamide; they have seen recent developments in terms of surface functionalization and the formation of structures at the nanoscale. In terms of high strength inorganic materials, basalt fibers and carbonaceous materials have found increased use in PPE. Boron is also generating considerable interest for fibers and coatings. Research on high-performance polymer fibers includes further improving their short- and long-term performance, moving to the nanoscale for new functionalities, and exploring their recyclability. An additional section describes a series of special textile structures relevant to PPE involving 3D textile structures, auxetic textile structures, shear thickening fabrics, nanoporous structures, phase change materials, and some specially designed textile-based composite structures for improved protection against mechanical hazards. The article ends with some perspectives on promising avenues for further developments.\",\"PeriodicalId\":94219,\"journal\":{\"name\":\"Textiles (Basel, Switzerland)\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textiles (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/textiles2020020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textiles (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/textiles2020020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fibers and Textiles for Personal Protective Equipment: Review of Recent Progress and Perspectives on Future Developments
This article reviews recent developments in fibers and textiles for Personal Protective Equipment (PPE) applications. Fibers are grouped into six categories: highly extensible elastomeric fibers, cellulose-based fibers, commodity synthetic fibers, high strength inorganic materials, and high performance polymer fibers. New developments with highly extensible elastomeric fibers include polyester-based elastic fibers and shape memory polyurethane. In the case of cellulose-based fibers, environmentally friendly processes and nanotechnology-enabling treatments are developed for natural fibers where attempts are made to transfer interesting attributes of the feedstock to regenerated cellulose fibers. Commodity synthetic fibers comprise polyolefins, polyester, and polyamide; they have seen recent developments in terms of surface functionalization and the formation of structures at the nanoscale. In terms of high strength inorganic materials, basalt fibers and carbonaceous materials have found increased use in PPE. Boron is also generating considerable interest for fibers and coatings. Research on high-performance polymer fibers includes further improving their short- and long-term performance, moving to the nanoscale for new functionalities, and exploring their recyclability. An additional section describes a series of special textile structures relevant to PPE involving 3D textile structures, auxetic textile structures, shear thickening fabrics, nanoporous structures, phase change materials, and some specially designed textile-based composite structures for improved protection against mechanical hazards. The article ends with some perspectives on promising avenues for further developments.