大规模文档流中突发检测的并行处理及其性能评价

Keiichi Tamura, K. Hirahara, H. Kitakami, Shingo Tamura
{"title":"大规模文档流中突发检测的并行处理及其性能评价","authors":"Keiichi Tamura, K. Hirahara, H. Kitakami, Shingo Tamura","doi":"10.5176/2251-1652_ADPC12.05","DOIUrl":null,"url":null,"abstract":"Online documents on the Internet are represented as a document stream because the documents have a temporal order. This has resulted in numerous studies on extracting a frequent phenomenon (involving keywords, users, locations etc.) known as a burst. Recently, with the growth of interest in social media, the number of documents created on the Internet has increased exponentially. Therefore, the speed-up of burst detection in a large-scale document stream is one of the most important challenges. In this paper, we propose a novel parallelization method for the parallel processing of Kleinberg’s burst detection algorithm in a large-scale document stream. Specifically, we present a technique to combine the inter-task parallelization model with the intra-task parallelization model. This combination can achieve seamless dynamic load balancing and detect bursts in a large-scale document streams in memory.","PeriodicalId":91079,"journal":{"name":"GSTF international journal on computing","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel Processing of Burst Detection in Large-Scale Document Streams and Its Performance Evaluation\",\"authors\":\"Keiichi Tamura, K. Hirahara, H. Kitakami, Shingo Tamura\",\"doi\":\"10.5176/2251-1652_ADPC12.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online documents on the Internet are represented as a document stream because the documents have a temporal order. This has resulted in numerous studies on extracting a frequent phenomenon (involving keywords, users, locations etc.) known as a burst. Recently, with the growth of interest in social media, the number of documents created on the Internet has increased exponentially. Therefore, the speed-up of burst detection in a large-scale document stream is one of the most important challenges. In this paper, we propose a novel parallelization method for the parallel processing of Kleinberg’s burst detection algorithm in a large-scale document stream. Specifically, we present a technique to combine the inter-task parallelization model with the intra-task parallelization model. This combination can achieve seamless dynamic load balancing and detect bursts in a large-scale document streams in memory.\",\"PeriodicalId\":91079,\"journal\":{\"name\":\"GSTF international journal on computing\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GSTF international journal on computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5176/2251-1652_ADPC12.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GSTF international journal on computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5176/2251-1652_ADPC12.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Internet上的在线文档表示为文档流,因为文档具有临时顺序。这导致了大量关于提取频繁现象(涉及关键字、用户、位置等)的研究。最近,随着人们对社交媒体兴趣的增长,在互联网上创建的文档数量呈指数级增长。因此,在大规模文档流中提高突发检测的速度是最重要的挑战之一。本文提出了一种新的并行化方法,用于大规模文档流中Kleinberg突发检测算法的并行处理。具体来说,我们提出了一种将任务间并行化模型与任务内并行化模型相结合的技术。这种组合可以实现无缝的动态负载平衡,并检测内存中大规模文档流中的突发情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Processing of Burst Detection in Large-Scale Document Streams and Its Performance Evaluation
Online documents on the Internet are represented as a document stream because the documents have a temporal order. This has resulted in numerous studies on extracting a frequent phenomenon (involving keywords, users, locations etc.) known as a burst. Recently, with the growth of interest in social media, the number of documents created on the Internet has increased exponentially. Therefore, the speed-up of burst detection in a large-scale document stream is one of the most important challenges. In this paper, we propose a novel parallelization method for the parallel processing of Kleinberg’s burst detection algorithm in a large-scale document stream. Specifically, we present a technique to combine the inter-task parallelization model with the intra-task parallelization model. This combination can achieve seamless dynamic load balancing and detect bursts in a large-scale document streams in memory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信