{"title":"低复杂互操作GNSS信号处理器及其性能","authors":"P. Kovář, P. Kačmařík, F. Vejražka","doi":"10.1109/PLANS.2010.5507229","DOIUrl":null,"url":null,"abstract":"The recent development of the GNSS systems and international cooperation resulted in important technical problems of the GNSS systems which are an interoperability and compatibility. In the interoperable receivers the most expensive parts - front ends - can be shared for signals reception of different systems. The unification of the signal processor is also possible with some small performance deterioration but the hardware complexity reduction is considerable. The paper analyses applicability of a classical E-L correlator for processing of various GNSS signals and compare its performance with optimal method. The low complex interoperable processor of software receiver based on a FPGA for the GPS, Galileo and GLONASS systems is proposed. The results of testing on the Galileo E1 and E5 signals are presented. The last part of the paper proposes architecture of a low cost multi system GNSS receiver based on mass market components.","PeriodicalId":94036,"journal":{"name":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","volume":"28 1","pages":"947-951"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Low complex interoperable GNSS signal processor and its performance\",\"authors\":\"P. Kovář, P. Kačmařík, F. Vejražka\",\"doi\":\"10.1109/PLANS.2010.5507229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent development of the GNSS systems and international cooperation resulted in important technical problems of the GNSS systems which are an interoperability and compatibility. In the interoperable receivers the most expensive parts - front ends - can be shared for signals reception of different systems. The unification of the signal processor is also possible with some small performance deterioration but the hardware complexity reduction is considerable. The paper analyses applicability of a classical E-L correlator for processing of various GNSS signals and compare its performance with optimal method. The low complex interoperable processor of software receiver based on a FPGA for the GPS, Galileo and GLONASS systems is proposed. The results of testing on the Galileo E1 and E5 signals are presented. The last part of the paper proposes architecture of a low cost multi system GNSS receiver based on mass market components.\",\"PeriodicalId\":94036,\"journal\":{\"name\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"volume\":\"28 1\",\"pages\":\"947-951\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2010.5507229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ION Position Location and Navigation Symposium : [proceedings]. IEEE/ION Position Location and Navigation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2010.5507229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low complex interoperable GNSS signal processor and its performance
The recent development of the GNSS systems and international cooperation resulted in important technical problems of the GNSS systems which are an interoperability and compatibility. In the interoperable receivers the most expensive parts - front ends - can be shared for signals reception of different systems. The unification of the signal processor is also possible with some small performance deterioration but the hardware complexity reduction is considerable. The paper analyses applicability of a classical E-L correlator for processing of various GNSS signals and compare its performance with optimal method. The low complex interoperable processor of software receiver based on a FPGA for the GPS, Galileo and GLONASS systems is proposed. The results of testing on the Galileo E1 and E5 signals are presented. The last part of the paper proposes architecture of a low cost multi system GNSS receiver based on mass market components.