使用完全基于深度学习的方法创建自动道路标志库存系统

Gabriele Galatolo, Matteo Papi, Andrea Spinelli, Guglielmo Giomi, A. Zedda, M. Calderisi
{"title":"使用完全基于深度学习的方法创建自动道路标志库存系统","authors":"Gabriele Galatolo, Matteo Papi, Andrea Spinelli, Guglielmo Giomi, A. Zedda, M. Calderisi","doi":"10.5220/0011266100003277","DOIUrl":null,"url":null,"abstract":": Some road sections are a veritable forest of road signs: just think how many indications you can come across on an urban or extra-urban route, near a construction site or a road diversion. The automatic recognition of vertical traffic signs is an extremely useful task in the automotive industry for many practical applications, such as supporting the driver while driving with an in-car advisory system or the creation of a register of signals for a particular road section to speed up maintenance and replacement of installations. Recent developments in deep learning have brought huge progress in the image processing area, which triggered successful applications like traffic sign recognition (TSR). The TSR is a specific image processing task in which real traffic scenes (images or frames from videos taken from vehicle cameras in uncontrolled lighting and occlusion conditions) are processed in order to detect and recognize traffic signs within it. Traffic Sign Recognition is a very recent technology facilitated by the Vienna Convention on Road Signs and Signals of 1968: during that international meeting, it was decided to standardize traffic signs so that they could be recognised more easily abroad. Finally, this work summarizes our proposal of a practical pipeline for the development of an automatic traffic sign recognition software.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"10 2 1","pages":"102-109"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creating an Automatic Road Sign Inventory System using a Fully Deep Learning-based Approach\",\"authors\":\"Gabriele Galatolo, Matteo Papi, Andrea Spinelli, Guglielmo Giomi, A. Zedda, M. Calderisi\",\"doi\":\"10.5220/0011266100003277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Some road sections are a veritable forest of road signs: just think how many indications you can come across on an urban or extra-urban route, near a construction site or a road diversion. The automatic recognition of vertical traffic signs is an extremely useful task in the automotive industry for many practical applications, such as supporting the driver while driving with an in-car advisory system or the creation of a register of signals for a particular road section to speed up maintenance and replacement of installations. Recent developments in deep learning have brought huge progress in the image processing area, which triggered successful applications like traffic sign recognition (TSR). The TSR is a specific image processing task in which real traffic scenes (images or frames from videos taken from vehicle cameras in uncontrolled lighting and occlusion conditions) are processed in order to detect and recognize traffic signs within it. Traffic Sign Recognition is a very recent technology facilitated by the Vienna Convention on Road Signs and Signals of 1968: during that international meeting, it was decided to standardize traffic signs so that they could be recognised more easily abroad. Finally, this work summarizes our proposal of a practical pipeline for the development of an automatic traffic sign recognition software.\",\"PeriodicalId\":88612,\"journal\":{\"name\":\"News. Phi Delta Epsilon\",\"volume\":\"10 2 1\",\"pages\":\"102-109\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News. Phi Delta Epsilon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011266100003277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011266100003277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

字体有些路段是名副其实的路标森林:想想看,在城市或城市外的路线上,在建筑工地附近或道路改道处,你会遇到多少路标。垂直交通标志的自动识别在汽车行业的许多实际应用中都是非常有用的任务,例如在驾驶时支持驾驶员使用车载咨询系统或为特定路段创建信号寄存器以加快维护和更换装置。深度学习的最新发展为图像处理领域带来了巨大的进步,引发了交通标志识别(TSR)等成功的应用。TSR是一项特定的图像处理任务,其中处理真实的交通场景(在不受控制的照明和遮挡条件下从车载摄像头拍摄的视频中的图像或帧),以检测和识别其中的交通标志。交通标志识别是1968年《维也纳道路标志和信号公约》推动的一项最新技术:在那次国际会议上,决定将交通标志标准化,以便在国外更容易识别。最后,本工作总结了我们提出的开发交通标志自动识别软件的实用管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creating an Automatic Road Sign Inventory System using a Fully Deep Learning-based Approach
: Some road sections are a veritable forest of road signs: just think how many indications you can come across on an urban or extra-urban route, near a construction site or a road diversion. The automatic recognition of vertical traffic signs is an extremely useful task in the automotive industry for many practical applications, such as supporting the driver while driving with an in-car advisory system or the creation of a register of signals for a particular road section to speed up maintenance and replacement of installations. Recent developments in deep learning have brought huge progress in the image processing area, which triggered successful applications like traffic sign recognition (TSR). The TSR is a specific image processing task in which real traffic scenes (images or frames from videos taken from vehicle cameras in uncontrolled lighting and occlusion conditions) are processed in order to detect and recognize traffic signs within it. Traffic Sign Recognition is a very recent technology facilitated by the Vienna Convention on Road Signs and Signals of 1968: during that international meeting, it was decided to standardize traffic signs so that they could be recognised more easily abroad. Finally, this work summarizes our proposal of a practical pipeline for the development of an automatic traffic sign recognition software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信