化学动力学

Denis S. Grebenkov
{"title":"化学动力学","authors":"Denis S. Grebenkov","doi":"10.1142/q0209","DOIUrl":null,"url":null,"abstract":"This chapter aims at emphasizing the crucial role of partial reactivity of a catalytic surface or a target molecule in diffusion-controlled reactions. We discuss various microscopic mechanisms that lead to imperfect reactions, the Robin boundary condition accounting for eventual failed reaction events, and the construction of the underlying stochastic process, the so-called partially reflected Brownian motion. We show that the random path to the reaction event can naturally be separated into the transport step toward the target, and the exploration step near the target surface until reaction. While most studies are focused exclusively on the transport step (describing perfect reactions), the exploration step, consisting is an intricate combination of diffusion-mediated jumps between boundary points, and its consequences for chemical reactions remain poorly understood. We discuss the related mathematical difficulties and recent achievements. In particular , we derive a general representation of the propagator, show its relation to the Dirichlet-to-Neumann operator, and illustrate its properties in the case of a flat surface.","PeriodicalId":8439,"journal":{"name":"arXiv: Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chemical Kinetics\",\"authors\":\"Denis S. Grebenkov\",\"doi\":\"10.1142/q0209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter aims at emphasizing the crucial role of partial reactivity of a catalytic surface or a target molecule in diffusion-controlled reactions. We discuss various microscopic mechanisms that lead to imperfect reactions, the Robin boundary condition accounting for eventual failed reaction events, and the construction of the underlying stochastic process, the so-called partially reflected Brownian motion. We show that the random path to the reaction event can naturally be separated into the transport step toward the target, and the exploration step near the target surface until reaction. While most studies are focused exclusively on the transport step (describing perfect reactions), the exploration step, consisting is an intricate combination of diffusion-mediated jumps between boundary points, and its consequences for chemical reactions remain poorly understood. We discuss the related mathematical difficulties and recent achievements. In particular , we derive a general representation of the propagator, show its relation to the Dirichlet-to-Neumann operator, and illustrate its properties in the case of a flat surface.\",\"PeriodicalId\":8439,\"journal\":{\"name\":\"arXiv: Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/q0209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/q0209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本章旨在强调催化表面或靶分子的部分反应性在扩散控制反应中的关键作用。我们讨论了导致不完美反应的各种微观机制,解释最终失败反应事件的Robin边界条件,以及潜在随机过程的构建,即所谓的部分反射布朗运动。研究表明,反应事件的随机路径可以自然地分为向目标的传递步骤和靠近目标表面直至反应的探索步骤。虽然大多数研究只关注传递步骤(描述完美反应),但探索步骤是边界点之间扩散介导的跳跃的复杂组合,其对化学反应的影响仍然知之甚少。我们讨论了相关的数学困难和最近的成就。特别地,我们推导了传播子的一般表示,说明了它与Dirichlet-to-Neumann算子的关系,并说明了它在平面情况下的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chemical Kinetics
This chapter aims at emphasizing the crucial role of partial reactivity of a catalytic surface or a target molecule in diffusion-controlled reactions. We discuss various microscopic mechanisms that lead to imperfect reactions, the Robin boundary condition accounting for eventual failed reaction events, and the construction of the underlying stochastic process, the so-called partially reflected Brownian motion. We show that the random path to the reaction event can naturally be separated into the transport step toward the target, and the exploration step near the target surface until reaction. While most studies are focused exclusively on the transport step (describing perfect reactions), the exploration step, consisting is an intricate combination of diffusion-mediated jumps between boundary points, and its consequences for chemical reactions remain poorly understood. We discuss the related mathematical difficulties and recent achievements. In particular , we derive a general representation of the propagator, show its relation to the Dirichlet-to-Neumann operator, and illustrate its properties in the case of a flat surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信