椭圆振膜推挽式静电扬声器的共振模式及声压

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Hsin-Yuan Chiang, Yu-Hsi Huang
{"title":"椭圆振膜推挽式静电扬声器的共振模式及声压","authors":"Hsin-Yuan Chiang, Yu-Hsi Huang","doi":"10.1115/1.4055561","DOIUrl":null,"url":null,"abstract":"\n This study modeled an elliptical diaphragm in a push-pull electrostatic speaker using the average displacement, specific impedance and equivalent radius to predict the frequency response in terms of sound pressure level (SPL). We also fabricated a prototype of an electrostatic speaker based on an elliptical diaphragm with fixed rim measuring 32 mm (semi-major axis) by 30 mm (semi-minor axis). The speaker was then used to analyze the frequency-response characteristics associated with resonance modes and displacement curves using the optical measurement, and obtain the SPL curves in an anechoic chamber using the acoustic measurements. The experiment results revealed that the predicted curves were in good agreement with the measured displacement and SPL curves. These curves of the electrostatic speaker were strongly affected by air radiation impedance. When our speaker was implemented in an over-ear electrostatic headphone, we obtained solid bass response and a frequency response typical of high-fidelity headphones.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"5 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonance Mode and Sound Pressure of a Push-Pull Electrostatic Speaker Based on Elliptical Diaphragm\",\"authors\":\"Hsin-Yuan Chiang, Yu-Hsi Huang\",\"doi\":\"10.1115/1.4055561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study modeled an elliptical diaphragm in a push-pull electrostatic speaker using the average displacement, specific impedance and equivalent radius to predict the frequency response in terms of sound pressure level (SPL). We also fabricated a prototype of an electrostatic speaker based on an elliptical diaphragm with fixed rim measuring 32 mm (semi-major axis) by 30 mm (semi-minor axis). The speaker was then used to analyze the frequency-response characteristics associated with resonance modes and displacement curves using the optical measurement, and obtain the SPL curves in an anechoic chamber using the acoustic measurements. The experiment results revealed that the predicted curves were in good agreement with the measured displacement and SPL curves. These curves of the electrostatic speaker were strongly affected by air radiation impedance. When our speaker was implemented in an over-ear electrostatic headphone, we obtained solid bass response and a frequency response typical of high-fidelity headphones.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055561\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055561","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用平均位移、比阻抗和等效半径对推拉式静电扬声器中的椭圆振膜进行建模,以声压级(SPL)来预测频率响应。我们还制作了一个基于椭圆膜片的静电扬声器原型,其固定边缘尺寸为32 mm(半长轴)× 30 mm(半短轴)。利用光学测量分析了扬声器的频率响应特性与共振模式和位移曲线的关系,并利用声学测量获得了消声室中的声压级曲线。实验结果表明,预测曲线与实测位移和声压级曲线吻合较好。静电扬声器的这些曲线受空气辐射阻抗的影响较大。当我们的扬声器在耳罩式静电耳机中实现时,我们获得了坚实的低音响应和高保真耳机的典型频率响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonance Mode and Sound Pressure of a Push-Pull Electrostatic Speaker Based on Elliptical Diaphragm
This study modeled an elliptical diaphragm in a push-pull electrostatic speaker using the average displacement, specific impedance and equivalent radius to predict the frequency response in terms of sound pressure level (SPL). We also fabricated a prototype of an electrostatic speaker based on an elliptical diaphragm with fixed rim measuring 32 mm (semi-major axis) by 30 mm (semi-minor axis). The speaker was then used to analyze the frequency-response characteristics associated with resonance modes and displacement curves using the optical measurement, and obtain the SPL curves in an anechoic chamber using the acoustic measurements. The experiment results revealed that the predicted curves were in good agreement with the measured displacement and SPL curves. These curves of the electrostatic speaker were strongly affected by air radiation impedance. When our speaker was implemented in an over-ear electrostatic headphone, we obtained solid bass response and a frequency response typical of high-fidelity headphones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信