基于1.83µJ/classification非线性支持向量机的患者特异性癫痫分类SoC

Muhammad Awais Bin Altaf, J. Tillak, Y. Kifle, Jerald Yoo
{"title":"基于1.83µJ/classification非线性支持向量机的患者特异性癫痫分类SoC","authors":"Muhammad Awais Bin Altaf, J. Tillak, Y. Kifle, Jerald Yoo","doi":"10.1109/ISSCC.2013.6487654","DOIUrl":null,"url":null,"abstract":"To mitigate seizure-affected patients, SoCs [1-3] have been developed 1) to detect electrical onset of seizure seconds before the clinical onset, and 2) to combine the SoC with neurostimulation. In particular, having detection delay of <;2s (for real-time suppression) while maintaining high detection rate is challenging [4]. However, [2] had a long latency (13.5s) and [3] suffered from a low detection rate (84.4%) with a high false alarm (max. 14.7%) due to an intermittent limit of the Linear Support Vector Machine (LSVM). In this paper, we present a Non-Linear SVM (NLSVM)-based seizure detection SoC which ensures a >95% detection accuracy, <;1% false alarm and <;2s latency.","PeriodicalId":6378,"journal":{"name":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","volume":"57 1","pages":"100-101"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"A 1.83µJ/classification nonlinear support-vector-machine-based patient-specific seizure classification SoC\",\"authors\":\"Muhammad Awais Bin Altaf, J. Tillak, Y. Kifle, Jerald Yoo\",\"doi\":\"10.1109/ISSCC.2013.6487654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To mitigate seizure-affected patients, SoCs [1-3] have been developed 1) to detect electrical onset of seizure seconds before the clinical onset, and 2) to combine the SoC with neurostimulation. In particular, having detection delay of <;2s (for real-time suppression) while maintaining high detection rate is challenging [4]. However, [2] had a long latency (13.5s) and [3] suffered from a low detection rate (84.4%) with a high false alarm (max. 14.7%) due to an intermittent limit of the Linear Support Vector Machine (LSVM). In this paper, we present a Non-Linear SVM (NLSVM)-based seizure detection SoC which ensures a >95% detection accuracy, <;1% false alarm and <;2s latency.\",\"PeriodicalId\":6378,\"journal\":{\"name\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"volume\":\"57 1\",\"pages\":\"100-101\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2013.6487654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2013.6487654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

为了减轻癫痫患者的影响,SoC[1-3]已经被开发出来,1)在临床发作前几秒钟检测癫痫的电发作,2)将SoC与神经刺激相结合。其中,检测延时为95%检测准确率,虚警< 1%,延时< 2s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1.83µJ/classification nonlinear support-vector-machine-based patient-specific seizure classification SoC
To mitigate seizure-affected patients, SoCs [1-3] have been developed 1) to detect electrical onset of seizure seconds before the clinical onset, and 2) to combine the SoC with neurostimulation. In particular, having detection delay of <;2s (for real-time suppression) while maintaining high detection rate is challenging [4]. However, [2] had a long latency (13.5s) and [3] suffered from a low detection rate (84.4%) with a high false alarm (max. 14.7%) due to an intermittent limit of the Linear Support Vector Machine (LSVM). In this paper, we present a Non-Linear SVM (NLSVM)-based seizure detection SoC which ensures a >95% detection accuracy, <;1% false alarm and <;2s latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信