基于矢量双峰分布的微差分进化算法(VB-mDE)

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Xu Chen, Xueliang Miao, Hugo Tianfield
{"title":"基于矢量双峰分布的微差分进化算法(VB-mDE)","authors":"Xu Chen, Xueliang Miao, Hugo Tianfield","doi":"10.3233/MGS-200331","DOIUrl":null,"url":null,"abstract":"Micro differential evolution (mDE) refers to algorithms that evolve with a small population to search for good solutions. Although mDEs are very useful for resource-constrained optimization tasks, the research on mDEs is still limited. In this paper, we propose a new mDE, i.e., vectorized bimodal distribution based mDE (called VB-mDE). The main idea is to employ a vectorized bimodal distribution parameter adjustment mechanism in mDE for performance enhancement. Specifically, in the VB-mDE, two important control parameters, i.e., scale factor F and crossover rate C⁢R, are adjusted by bimodal Cauchy distribution. At the same time, to increase the population diversity, the scale factor F is vectorized. The proposed VB-mDE is evaluated on the CEC2014 benchmark functions and compared with the state-of-the-art mDEs and normal DEs. The results show that the proposed VB-mDE has advantages in terms of solution accuracy and convergence speed.","PeriodicalId":43659,"journal":{"name":"Multiagent and Grid Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vectorized bimodal distribution based micro differential evolution algorithm (VB-mDE)\",\"authors\":\"Xu Chen, Xueliang Miao, Hugo Tianfield\",\"doi\":\"10.3233/MGS-200331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro differential evolution (mDE) refers to algorithms that evolve with a small population to search for good solutions. Although mDEs are very useful for resource-constrained optimization tasks, the research on mDEs is still limited. In this paper, we propose a new mDE, i.e., vectorized bimodal distribution based mDE (called VB-mDE). The main idea is to employ a vectorized bimodal distribution parameter adjustment mechanism in mDE for performance enhancement. Specifically, in the VB-mDE, two important control parameters, i.e., scale factor F and crossover rate C⁢R, are adjusted by bimodal Cauchy distribution. At the same time, to increase the population diversity, the scale factor F is vectorized. The proposed VB-mDE is evaluated on the CEC2014 benchmark functions and compared with the state-of-the-art mDEs and normal DEs. The results show that the proposed VB-mDE has advantages in terms of solution accuracy and convergence speed.\",\"PeriodicalId\":43659,\"journal\":{\"name\":\"Multiagent and Grid Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiagent and Grid Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/MGS-200331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiagent and Grid Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/MGS-200331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

微差分进化(Micro differential evolution, mDE)是指在小种群中进化以寻找最佳解的算法。尽管mDEs在资源约束优化任务中非常有用,但对其的研究仍然有限。在本文中,我们提出了一个新的mDE,即基于矢量双峰分布的mDE(称为VB-mDE)。其主要思想是采用向量化双峰分布参数调整机制来提高算法的性能。具体来说,在VB-mDE中,两个重要的控制参数,即尺度因子F和交叉率C²R,通过双峰柯西分布进行调节。同时,为增加种群多样性,对尺度因子F进行矢量化处理。在CEC2014基准函数上对所提出的VB-mDE进行了评估,并与现有的mde和普通的de进行了比较,结果表明所提出的VB-mDE在求解精度和收敛速度方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A vectorized bimodal distribution based micro differential evolution algorithm (VB-mDE)
Micro differential evolution (mDE) refers to algorithms that evolve with a small population to search for good solutions. Although mDEs are very useful for resource-constrained optimization tasks, the research on mDEs is still limited. In this paper, we propose a new mDE, i.e., vectorized bimodal distribution based mDE (called VB-mDE). The main idea is to employ a vectorized bimodal distribution parameter adjustment mechanism in mDE for performance enhancement. Specifically, in the VB-mDE, two important control parameters, i.e., scale factor F and crossover rate C⁢R, are adjusted by bimodal Cauchy distribution. At the same time, to increase the population diversity, the scale factor F is vectorized. The proposed VB-mDE is evaluated on the CEC2014 benchmark functions and compared with the state-of-the-art mDEs and normal DEs. The results show that the proposed VB-mDE has advantages in terms of solution accuracy and convergence speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multiagent and Grid Systems
Multiagent and Grid Systems COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
1.50
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信