Edwin Lawrence, Marie Bjoerdal Loevereide, Sanggeetha Kalidas, Ngoc Le Le, Sarjono Tasi Antoneus, Tu Le Mai Khanh
{"title":"基于代表性网络模型情景预测的成熟油田产量优化:一种无需干预的快速解决方案","authors":"Edwin Lawrence, Marie Bjoerdal Loevereide, Sanggeetha Kalidas, Ngoc Le Le, Sarjono Tasi Antoneus, Tu Le Mai Khanh","doi":"10.2118/205662-ms","DOIUrl":null,"url":null,"abstract":"\n As part of the production optimization exercise in J field, an initiative has been taken to enhance the field production target without well intervention. J field is a mature field; the wells are mostly gas lifted, and currently it is in production decline mode. As part of this optimization exercise, a network model with multiple platforms was updated with the surface systems (separator, compressors, pumps, FPSO) and pipelines in place to understand the actual pressure drop across the system. Modelling and calibration of the well and network model was done for the entire field, and the calibrated model was used for the production optimization exercise.\n A representative model updated with the current operating conditions is the key for the field production and asset management. In this exercise, a multiphase flow simulator for wells and pipelines has been utilized. A total of ∼50 wells (inclusive of idle wells) has been included in the network model. Basically, the exercise started by updating the single-well model using latest well test data. During the calibration at well level, several steps were taken, such as evaluation of historical production, reservoir pressure, and well intervention. This will provide a better idea on the fine-tuning parameters. Upon completion of calibrating well models, the next level was calibration of network model at the platform level by matching against the platform operating conditions (platform production rates, separator/pipeline pressure). The last stage was performing field network model calibration to match the overall field performance. During the platform stage calibration, some parameters such as pipeline ID, horizontal flow correlation, friction factor, and holdup factor were fine-tuned to match the platform level operating conditions.\n Most of the wells in J field have been calibrated by meeting the success criterion, which is within +/-5% for the production rates. However, there were some challenges in matching several wells due to well test data validity especially wells located on remote platform where there is no dedicated test separator as well as the impact of gas breakthrough, which may interfere to performance of wells. These wells were decided to be retested in the following month. As for the platform level matching, five platforms were matched within +/-10% against the reported production rates. During the evaluation, it was observed there were some uncertainties in the reported water and gas rates (platform level vs. well test data). This is something that can be looked into for a better measurement in the future. By this observation, it was suggested to select Platform 1 with the most reliable test data as well as the platform rate for the optimization process and qualifying for the field trial. Nevertheless, with the representative network model, two scenarios, reducing separator pressure at platform level and gas lift optimization by an optimal gas lift rate allocation, were performed. The model predicts that a separator pressure reduction of 30 psi in Platform 1 has a potential gain of ∼300 BOPD, which is aligned with the field results. Apart from that, there was also a potential savings in gas by utilizing the predicted allocated gas lift injection rate.","PeriodicalId":11052,"journal":{"name":"Day 3 Thu, October 14, 2021","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Production Optimization in Mature Field Through Scenario Prediction Using a Representative Network Model: A Rapid Solution Without Well Intervention\",\"authors\":\"Edwin Lawrence, Marie Bjoerdal Loevereide, Sanggeetha Kalidas, Ngoc Le Le, Sarjono Tasi Antoneus, Tu Le Mai Khanh\",\"doi\":\"10.2118/205662-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n As part of the production optimization exercise in J field, an initiative has been taken to enhance the field production target without well intervention. J field is a mature field; the wells are mostly gas lifted, and currently it is in production decline mode. As part of this optimization exercise, a network model with multiple platforms was updated with the surface systems (separator, compressors, pumps, FPSO) and pipelines in place to understand the actual pressure drop across the system. Modelling and calibration of the well and network model was done for the entire field, and the calibrated model was used for the production optimization exercise.\\n A representative model updated with the current operating conditions is the key for the field production and asset management. In this exercise, a multiphase flow simulator for wells and pipelines has been utilized. A total of ∼50 wells (inclusive of idle wells) has been included in the network model. Basically, the exercise started by updating the single-well model using latest well test data. During the calibration at well level, several steps were taken, such as evaluation of historical production, reservoir pressure, and well intervention. This will provide a better idea on the fine-tuning parameters. Upon completion of calibrating well models, the next level was calibration of network model at the platform level by matching against the platform operating conditions (platform production rates, separator/pipeline pressure). The last stage was performing field network model calibration to match the overall field performance. During the platform stage calibration, some parameters such as pipeline ID, horizontal flow correlation, friction factor, and holdup factor were fine-tuned to match the platform level operating conditions.\\n Most of the wells in J field have been calibrated by meeting the success criterion, which is within +/-5% for the production rates. However, there were some challenges in matching several wells due to well test data validity especially wells located on remote platform where there is no dedicated test separator as well as the impact of gas breakthrough, which may interfere to performance of wells. These wells were decided to be retested in the following month. As for the platform level matching, five platforms were matched within +/-10% against the reported production rates. During the evaluation, it was observed there were some uncertainties in the reported water and gas rates (platform level vs. well test data). This is something that can be looked into for a better measurement in the future. By this observation, it was suggested to select Platform 1 with the most reliable test data as well as the platform rate for the optimization process and qualifying for the field trial. Nevertheless, with the representative network model, two scenarios, reducing separator pressure at platform level and gas lift optimization by an optimal gas lift rate allocation, were performed. The model predicts that a separator pressure reduction of 30 psi in Platform 1 has a potential gain of ∼300 BOPD, which is aligned with the field results. Apart from that, there was also a potential savings in gas by utilizing the predicted allocated gas lift injection rate.\",\"PeriodicalId\":11052,\"journal\":{\"name\":\"Day 3 Thu, October 14, 2021\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, October 14, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205662-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 14, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205662-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Production Optimization in Mature Field Through Scenario Prediction Using a Representative Network Model: A Rapid Solution Without Well Intervention
As part of the production optimization exercise in J field, an initiative has been taken to enhance the field production target without well intervention. J field is a mature field; the wells are mostly gas lifted, and currently it is in production decline mode. As part of this optimization exercise, a network model with multiple platforms was updated with the surface systems (separator, compressors, pumps, FPSO) and pipelines in place to understand the actual pressure drop across the system. Modelling and calibration of the well and network model was done for the entire field, and the calibrated model was used for the production optimization exercise.
A representative model updated with the current operating conditions is the key for the field production and asset management. In this exercise, a multiphase flow simulator for wells and pipelines has been utilized. A total of ∼50 wells (inclusive of idle wells) has been included in the network model. Basically, the exercise started by updating the single-well model using latest well test data. During the calibration at well level, several steps were taken, such as evaluation of historical production, reservoir pressure, and well intervention. This will provide a better idea on the fine-tuning parameters. Upon completion of calibrating well models, the next level was calibration of network model at the platform level by matching against the platform operating conditions (platform production rates, separator/pipeline pressure). The last stage was performing field network model calibration to match the overall field performance. During the platform stage calibration, some parameters such as pipeline ID, horizontal flow correlation, friction factor, and holdup factor were fine-tuned to match the platform level operating conditions.
Most of the wells in J field have been calibrated by meeting the success criterion, which is within +/-5% for the production rates. However, there were some challenges in matching several wells due to well test data validity especially wells located on remote platform where there is no dedicated test separator as well as the impact of gas breakthrough, which may interfere to performance of wells. These wells were decided to be retested in the following month. As for the platform level matching, five platforms were matched within +/-10% against the reported production rates. During the evaluation, it was observed there were some uncertainties in the reported water and gas rates (platform level vs. well test data). This is something that can be looked into for a better measurement in the future. By this observation, it was suggested to select Platform 1 with the most reliable test data as well as the platform rate for the optimization process and qualifying for the field trial. Nevertheless, with the representative network model, two scenarios, reducing separator pressure at platform level and gas lift optimization by an optimal gas lift rate allocation, were performed. The model predicts that a separator pressure reduction of 30 psi in Platform 1 has a potential gain of ∼300 BOPD, which is aligned with the field results. Apart from that, there was also a potential savings in gas by utilizing the predicted allocated gas lift injection rate.