{"title":"两相流体水去除实验研究","authors":"E. Weiwei","doi":"10.36959/901/247","DOIUrl":null,"url":null,"abstract":"The improvement of oil-water separation efficiency has become increasingly important in the oil and gas industry, as well as for environmental protection. This study uses both experimental and numerical methods to investigate the effects of flow rate (v), oil volume fraction (vof), and temperature (T) on oil-water separation efficiency. Design Expert software is used to analyzing data of the experiments. Experimental results show that the oil volume fraction and temperature are significant factors for separation efficiency.","PeriodicalId":16698,"journal":{"name":"Journal of Petrochemical Engineering","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Bulk Water Removal in Two Phase Flow\",\"authors\":\"E. Weiwei\",\"doi\":\"10.36959/901/247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improvement of oil-water separation efficiency has become increasingly important in the oil and gas industry, as well as for environmental protection. This study uses both experimental and numerical methods to investigate the effects of flow rate (v), oil volume fraction (vof), and temperature (T) on oil-water separation efficiency. Design Expert software is used to analyzing data of the experiments. Experimental results show that the oil volume fraction and temperature are significant factors for separation efficiency.\",\"PeriodicalId\":16698,\"journal\":{\"name\":\"Journal of Petrochemical Engineering\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petrochemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36959/901/247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petrochemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36959/901/247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental Study of Bulk Water Removal in Two Phase Flow
The improvement of oil-water separation efficiency has become increasingly important in the oil and gas industry, as well as for environmental protection. This study uses both experimental and numerical methods to investigate the effects of flow rate (v), oil volume fraction (vof), and temperature (T) on oil-water separation efficiency. Design Expert software is used to analyzing data of the experiments. Experimental results show that the oil volume fraction and temperature are significant factors for separation efficiency.