Shuchi Grover, M. Bienkowski, J. Niekrasz, Matthias Hauswirth
{"title":"大规模评估问题解决过程","authors":"Shuchi Grover, M. Bienkowski, J. Niekrasz, Matthias Hauswirth","doi":"10.1145/2876034.2893425","DOIUrl":null,"url":null,"abstract":"Authentic problem solving tasks in digital environments are often open-ended with ill-defined pathways to a goal state. Scaffolds and formative feedback during this process help learners develop the requisite skills and understanding, but require assessing the problem-solving process. This paper describes a hybrid approach to assessing process at scale in the context of the use of computational thinking practices during programming. Our approach combines hypothesis-driven analysis, using an evidence-centered design framework, with discovery-driven data analytics. We report on work-in-progress involving novices and expert programmers working on Blockly games.","PeriodicalId":20739,"journal":{"name":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Assessing Problem-Solving Process At Scale\",\"authors\":\"Shuchi Grover, M. Bienkowski, J. Niekrasz, Matthias Hauswirth\",\"doi\":\"10.1145/2876034.2893425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Authentic problem solving tasks in digital environments are often open-ended with ill-defined pathways to a goal state. Scaffolds and formative feedback during this process help learners develop the requisite skills and understanding, but require assessing the problem-solving process. This paper describes a hybrid approach to assessing process at scale in the context of the use of computational thinking practices during programming. Our approach combines hypothesis-driven analysis, using an evidence-centered design framework, with discovery-driven data analytics. We report on work-in-progress involving novices and expert programmers working on Blockly games.\",\"PeriodicalId\":20739,\"journal\":{\"name\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third (2016) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2876034.2893425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third (2016) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2876034.2893425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Authentic problem solving tasks in digital environments are often open-ended with ill-defined pathways to a goal state. Scaffolds and formative feedback during this process help learners develop the requisite skills and understanding, but require assessing the problem-solving process. This paper describes a hybrid approach to assessing process at scale in the context of the use of computational thinking practices during programming. Our approach combines hypothesis-driven analysis, using an evidence-centered design framework, with discovery-driven data analytics. We report on work-in-progress involving novices and expert programmers working on Blockly games.