{"title":"系统维收缩:一种计算方程和包含N个未知数的M个线性方程的系统的方法。","authors":"Francisco Lubota Bufeca Zau","doi":"10.37293/SAPIENTIAE71.06","DOIUrl":null,"url":null,"abstract":"Os sistemas lineares homogéneos integram propriedades especiais que os diferenciam dos demais sistemas lineares e permitem simplificar a busca por soluções que, em certas condições, promovem soluções gerais de até sistemas heterogéneos e sistemas não lineares, daí a sua crucial importância na Matemática, ciências afins e na Engenharia. Desde os Nove Capítulos sobre a Arte Matemática da China Antiga a autores como SekiKowa, Leibniz, Cayley, Silvester, Bôcher, a resolução dos sistemas lineares passou a contar com métodos matriciais firmados em resultados teóricos como o algoritmo de eliminação de Gauss-Jordan, o teorema de Cramer, o teorema de Kronecker-Capelli. Introduziu-se, também, métodos iterativos clássicos como os de Jacobi-Richardson, Gauss-Seidel, factoração de Cholesck, o método SOR, métodos iterativos dos gradientes conjugados, assim como métodos gráficos. Contudo, este artigo apresenta uma alternativa metodológica inovadora denominada contracção dimensional sistemática, que não se funda em matrizes: visa, entre outras dinâmicas, reduzir, de forma sistemática, o número de incógnitas até que a respectiva resolução seja viável. Nesta visão, objectiva-se analisar a operacionalidade deste método de contracção dimensional sistemática no estudo de equações e sistemas lineares, a partir de técnicas homogéneas. Para o efeito, este artigo serve-se de uma pesquisa teórico-metodológica, de tipologia explicativa, com procedimentos técnicos bibliográficos e que utiliza o método indutivo - dedutivo. Assim, foi construído o método de contracção dimensional sistemática e aplicado para a obtenção de soluções originais e exactas de sistemas homogéneos de equações lineares, porque soluções desta natureza são condição necessária para a construção do produto vectorial homogéneo e, em geral, da Teoria Homogénea dos Espaços Vectoriais.","PeriodicalId":53070,"journal":{"name":"SAPIENTIAE","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Contracção dimensional sistemática: uma proposta metodológica para o cálculo de equações e sistemas de M equações lineares com N incógnitas.\",\"authors\":\"Francisco Lubota Bufeca Zau\",\"doi\":\"10.37293/SAPIENTIAE71.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Os sistemas lineares homogéneos integram propriedades especiais que os diferenciam dos demais sistemas lineares e permitem simplificar a busca por soluções que, em certas condições, promovem soluções gerais de até sistemas heterogéneos e sistemas não lineares, daí a sua crucial importância na Matemática, ciências afins e na Engenharia. Desde os Nove Capítulos sobre a Arte Matemática da China Antiga a autores como SekiKowa, Leibniz, Cayley, Silvester, Bôcher, a resolução dos sistemas lineares passou a contar com métodos matriciais firmados em resultados teóricos como o algoritmo de eliminação de Gauss-Jordan, o teorema de Cramer, o teorema de Kronecker-Capelli. Introduziu-se, também, métodos iterativos clássicos como os de Jacobi-Richardson, Gauss-Seidel, factoração de Cholesck, o método SOR, métodos iterativos dos gradientes conjugados, assim como métodos gráficos. Contudo, este artigo apresenta uma alternativa metodológica inovadora denominada contracção dimensional sistemática, que não se funda em matrizes: visa, entre outras dinâmicas, reduzir, de forma sistemática, o número de incógnitas até que a respectiva resolução seja viável. Nesta visão, objectiva-se analisar a operacionalidade deste método de contracção dimensional sistemática no estudo de equações e sistemas lineares, a partir de técnicas homogéneas. Para o efeito, este artigo serve-se de uma pesquisa teórico-metodológica, de tipologia explicativa, com procedimentos técnicos bibliográficos e que utiliza o método indutivo - dedutivo. Assim, foi construído o método de contracção dimensional sistemática e aplicado para a obtenção de soluções originais e exactas de sistemas homogéneos de equações lineares, porque soluções desta natureza são condição necessária para a construção do produto vectorial homogéneo e, em geral, da Teoria Homogénea dos Espaços Vectoriais.\",\"PeriodicalId\":53070,\"journal\":{\"name\":\"SAPIENTIAE\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAPIENTIAE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37293/SAPIENTIAE71.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAPIENTIAE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37293/SAPIENTIAE71.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Contracção dimensional sistemática: uma proposta metodológica para o cálculo de equações e sistemas de M equações lineares com N incógnitas.
Os sistemas lineares homogéneos integram propriedades especiais que os diferenciam dos demais sistemas lineares e permitem simplificar a busca por soluções que, em certas condições, promovem soluções gerais de até sistemas heterogéneos e sistemas não lineares, daí a sua crucial importância na Matemática, ciências afins e na Engenharia. Desde os Nove Capítulos sobre a Arte Matemática da China Antiga a autores como SekiKowa, Leibniz, Cayley, Silvester, Bôcher, a resolução dos sistemas lineares passou a contar com métodos matriciais firmados em resultados teóricos como o algoritmo de eliminação de Gauss-Jordan, o teorema de Cramer, o teorema de Kronecker-Capelli. Introduziu-se, também, métodos iterativos clássicos como os de Jacobi-Richardson, Gauss-Seidel, factoração de Cholesck, o método SOR, métodos iterativos dos gradientes conjugados, assim como métodos gráficos. Contudo, este artigo apresenta uma alternativa metodológica inovadora denominada contracção dimensional sistemática, que não se funda em matrizes: visa, entre outras dinâmicas, reduzir, de forma sistemática, o número de incógnitas até que a respectiva resolução seja viável. Nesta visão, objectiva-se analisar a operacionalidade deste método de contracção dimensional sistemática no estudo de equações e sistemas lineares, a partir de técnicas homogéneas. Para o efeito, este artigo serve-se de uma pesquisa teórico-metodológica, de tipologia explicativa, com procedimentos técnicos bibliográficos e que utiliza o método indutivo - dedutivo. Assim, foi construído o método de contracção dimensional sistemática e aplicado para a obtenção de soluções originais e exactas de sistemas homogéneos de equações lineares, porque soluções desta natureza são condição necessária para a construção do produto vectorial homogéneo e, em geral, da Teoria Homogénea dos Espaços Vectoriais.