M. Schwenk, P. Schläfli, D. Bandou, Natacha Gribenski, G. Douillet, F. Schlunegger
{"title":"从冰川侵蚀到盆地过填:瑞士伯尔尼240米厚的过深填层序","authors":"M. Schwenk, P. Schläfli, D. Bandou, Natacha Gribenski, G. Douillet, F. Schlunegger","doi":"10.5194/sd-30-17-2022","DOIUrl":null,"url":null,"abstract":"Abstract. We drilled a 210 m-thick succession of Quaternary sediments and extended it 30 m upsection with information that we collected from an adjacent outcrop. In the 240 m-thick succession we identified 12 different lithofacies, grouped them into five facies assemblages, and distinguished two major sedimentary sequences. A sharp contact at 103 m depth cuts off cross-beds in sequence A and separates them from the overlying horizontal beds in sequence B. Although the lowermost facies assemblage of each sequence includes a till deposited during a period of ice cover, the two tills differ from each other. In particular, the till at the base of sequence A is dominated by large clasts derived from the underlying Molasse bedrock, whereas the till at the base of sequence B has no such Molasse components. Furthermore, the till in sequence A bears evidence of glaciotectonic deformation. Both tills are overlain by thick assemblages of subaqueous, most likely glaciolacustrine and lacustrine facies elements. The cross-bedded and steeply inclined sand, gravel, and diamictic beds of sequence A are interpreted as deposits of density currents in a subaqueous ice-contact fan system within a proglacial lake. In contrast, the lacustrine sediments in sequence B are considered to record a less energetic environment where the material was most likely deposited in a prodelta setting that gradually developed into a delta plain. Towards the top, sequence B evolves into a fluvial system recorded in sequence C, when large sediment fluxes of a possibly advancing glacier resulted in a widespread cover of the region by a thick gravel unit. Feldspar luminescence dating on two samples from a sand layer at the top of sequence B provided uncorrected ages of 250.3 ± 80.2 and 251.3 ± 59.8 ka. The combination of these ages with lithostratigraphic correlations of sedimentary sequences encountered in neighboring scientific drillings suggests that sequence B was deposited between Marine Isotope Stage 8 (MIS 8; 300–243 ka) and MIS 7 (243–191 ka). This depositional age marks the end of one stage of overdeepening–fill in the perialpine Aare Valley near Bern.\n","PeriodicalId":51840,"journal":{"name":"Scientific Drilling","volume":"20 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland\",\"authors\":\"M. Schwenk, P. Schläfli, D. Bandou, Natacha Gribenski, G. Douillet, F. Schlunegger\",\"doi\":\"10.5194/sd-30-17-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We drilled a 210 m-thick succession of Quaternary sediments and extended it 30 m upsection with information that we collected from an adjacent outcrop. In the 240 m-thick succession we identified 12 different lithofacies, grouped them into five facies assemblages, and distinguished two major sedimentary sequences. A sharp contact at 103 m depth cuts off cross-beds in sequence A and separates them from the overlying horizontal beds in sequence B. Although the lowermost facies assemblage of each sequence includes a till deposited during a period of ice cover, the two tills differ from each other. In particular, the till at the base of sequence A is dominated by large clasts derived from the underlying Molasse bedrock, whereas the till at the base of sequence B has no such Molasse components. Furthermore, the till in sequence A bears evidence of glaciotectonic deformation. Both tills are overlain by thick assemblages of subaqueous, most likely glaciolacustrine and lacustrine facies elements. The cross-bedded and steeply inclined sand, gravel, and diamictic beds of sequence A are interpreted as deposits of density currents in a subaqueous ice-contact fan system within a proglacial lake. In contrast, the lacustrine sediments in sequence B are considered to record a less energetic environment where the material was most likely deposited in a prodelta setting that gradually developed into a delta plain. Towards the top, sequence B evolves into a fluvial system recorded in sequence C, when large sediment fluxes of a possibly advancing glacier resulted in a widespread cover of the region by a thick gravel unit. Feldspar luminescence dating on two samples from a sand layer at the top of sequence B provided uncorrected ages of 250.3 ± 80.2 and 251.3 ± 59.8 ka. The combination of these ages with lithostratigraphic correlations of sedimentary sequences encountered in neighboring scientific drillings suggests that sequence B was deposited between Marine Isotope Stage 8 (MIS 8; 300–243 ka) and MIS 7 (243–191 ka). This depositional age marks the end of one stage of overdeepening–fill in the perialpine Aare Valley near Bern.\\n\",\"PeriodicalId\":51840,\"journal\":{\"name\":\"Scientific Drilling\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Drilling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/sd-30-17-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Drilling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/sd-30-17-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
From glacial erosion to basin overfill: a 240 m-thick overdeepening–fill sequence in Bern, Switzerland
Abstract. We drilled a 210 m-thick succession of Quaternary sediments and extended it 30 m upsection with information that we collected from an adjacent outcrop. In the 240 m-thick succession we identified 12 different lithofacies, grouped them into five facies assemblages, and distinguished two major sedimentary sequences. A sharp contact at 103 m depth cuts off cross-beds in sequence A and separates them from the overlying horizontal beds in sequence B. Although the lowermost facies assemblage of each sequence includes a till deposited during a period of ice cover, the two tills differ from each other. In particular, the till at the base of sequence A is dominated by large clasts derived from the underlying Molasse bedrock, whereas the till at the base of sequence B has no such Molasse components. Furthermore, the till in sequence A bears evidence of glaciotectonic deformation. Both tills are overlain by thick assemblages of subaqueous, most likely glaciolacustrine and lacustrine facies elements. The cross-bedded and steeply inclined sand, gravel, and diamictic beds of sequence A are interpreted as deposits of density currents in a subaqueous ice-contact fan system within a proglacial lake. In contrast, the lacustrine sediments in sequence B are considered to record a less energetic environment where the material was most likely deposited in a prodelta setting that gradually developed into a delta plain. Towards the top, sequence B evolves into a fluvial system recorded in sequence C, when large sediment fluxes of a possibly advancing glacier resulted in a widespread cover of the region by a thick gravel unit. Feldspar luminescence dating on two samples from a sand layer at the top of sequence B provided uncorrected ages of 250.3 ± 80.2 and 251.3 ± 59.8 ka. The combination of these ages with lithostratigraphic correlations of sedimentary sequences encountered in neighboring scientific drillings suggests that sequence B was deposited between Marine Isotope Stage 8 (MIS 8; 300–243 ka) and MIS 7 (243–191 ka). This depositional age marks the end of one stage of overdeepening–fill in the perialpine Aare Valley near Bern.