SQuID:语义相似感知查询意图发现

Anna Fariha, Sheikh Muhammad Sarwar, A. Meliou
{"title":"SQuID:语义相似感知查询意图发现","authors":"Anna Fariha, Sheikh Muhammad Sarwar, A. Meliou","doi":"10.1145/3183713.3193548","DOIUrl":null,"url":null,"abstract":"Recent expansion of database technology demands a convenient framework for non-expert users to explore datasets. Several approaches exist to assist these non-expert users where they can express their query intent by providing example tuples for their intended query output. However, these approaches treat the structural similarity among the example tuples as the only factor specifying query intent and ignore the richer context present in the data. In this demo, we present SQuID, a system for Semantic similarity-aware Query Intent Discovery. SQuID takes a few example tuples from the user as input, through a simple interface, and consults the database to discover deeper associations among these examples. These data-driven associations reveal the semantic context of the provided examples, allowing SQuID to infer the user's intended query precisely and effectively. SQuID further explains its inference, by displaying the discovered semantic context to the user, who can then provide feedback and tune the result. We demonstrate how SQuID can capture even esoteric and complex semantic contexts, alleviating the need for constructing complex SQL queries, while not requiring the user to have any schema or query language knowledge.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"SQuID: Semantic Similarity-Aware Query Intent Discovery\",\"authors\":\"Anna Fariha, Sheikh Muhammad Sarwar, A. Meliou\",\"doi\":\"10.1145/3183713.3193548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent expansion of database technology demands a convenient framework for non-expert users to explore datasets. Several approaches exist to assist these non-expert users where they can express their query intent by providing example tuples for their intended query output. However, these approaches treat the structural similarity among the example tuples as the only factor specifying query intent and ignore the richer context present in the data. In this demo, we present SQuID, a system for Semantic similarity-aware Query Intent Discovery. SQuID takes a few example tuples from the user as input, through a simple interface, and consults the database to discover deeper associations among these examples. These data-driven associations reveal the semantic context of the provided examples, allowing SQuID to infer the user's intended query precisely and effectively. SQuID further explains its inference, by displaying the discovered semantic context to the user, who can then provide feedback and tune the result. We demonstrate how SQuID can capture even esoteric and complex semantic contexts, alleviating the need for constructing complex SQL queries, while not requiring the user to have any schema or query language knowledge.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3193548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3193548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

最近数据库技术的扩展需要一个方便的框架供非专业用户探索数据集。有几种方法可以帮助这些非专业用户通过为他们预期的查询输出提供示例元组来表达他们的查询意图。然而,这些方法将示例元组之间的结构相似性视为指定查询意图的唯一因素,而忽略了数据中存在的更丰富的上下文。在这个演示中,我们展示了SQuID,一个语义相似感知的查询意图发现系统。SQuID通过一个简单的界面从用户那里获取一些示例元组作为输入,并查询数据库以发现这些示例之间更深层次的关联。这些数据驱动的关联揭示了所提供示例的语义上下文,从而允许SQuID精确而有效地推断用户想要查询的内容。SQuID通过向用户显示发现的语义上下文来进一步解释它的推理,然后用户可以提供反馈并调整结果。我们演示了SQuID如何捕获甚至深奥和复杂的语义上下文,从而减轻了构建复杂SQL查询的需要,同时不要求用户具有任何模式或查询语言知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SQuID: Semantic Similarity-Aware Query Intent Discovery
Recent expansion of database technology demands a convenient framework for non-expert users to explore datasets. Several approaches exist to assist these non-expert users where they can express their query intent by providing example tuples for their intended query output. However, these approaches treat the structural similarity among the example tuples as the only factor specifying query intent and ignore the richer context present in the data. In this demo, we present SQuID, a system for Semantic similarity-aware Query Intent Discovery. SQuID takes a few example tuples from the user as input, through a simple interface, and consults the database to discover deeper associations among these examples. These data-driven associations reveal the semantic context of the provided examples, allowing SQuID to infer the user's intended query precisely and effectively. SQuID further explains its inference, by displaying the discovered semantic context to the user, who can then provide feedback and tune the result. We demonstrate how SQuID can capture even esoteric and complex semantic contexts, alleviating the need for constructing complex SQL queries, while not requiring the user to have any schema or query language knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信