具有一定非负势的Schrödinger算子和Heisenberg群上的littlewood - paly - stein函数相关的Morrey空间

IF 0.4 4区 数学 Q4 MATHEMATICS
Huan Wang
{"title":"具有一定非负势的Schrödinger算子和Heisenberg群上的littlewood - paly - stein函数相关的Morrey空间","authors":"Huan Wang","doi":"10.1556/012.2020.57.4.1477","DOIUrl":null,"url":null,"abstract":"Let be a Schrödinger operator on the Heisenberg group , where is the sublaplacian on and the nonnegative potential V belongs to the reverse Hölder class with . Here is the homogeneous dimension of . Assume that is the heat semigroup generated by. The Lusin area integral and the Littlewood–Paley–Stein function associated with the Schrödinger operator are defined, respectively, bywhereandWhere is a parameter. In this article, the author shows that there is a relationship between and the operator and for any , the following inequality holds true:Based on this inequality and known results for the Lusin area integral , the author establishes the strong-type and weak-type estimates for the Littlewood–Paley–Stein function on . In this article, the author also introduces a class of Morrey spaces associated with the Schrödinger operator on . By using some pointwise estimates of the kernels related to the nonnegative potential V, the author establishes the boundedness properties of the operator acting on the Morrey spaces for an appropriate choice of . It can be shown that the same conclusions hold for the operator on generalized Morrey spaces as well.","PeriodicalId":51187,"journal":{"name":"Studia Scientiarum Mathematicarum Hungarica","volume":"29 1","pages":"465-507"},"PeriodicalIF":0.4000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morrey Spaces Related to Schrödinger Operators with Certain Nonnegative Potentials and Littlewood–Paley–Stein Functions on the Heisenberg groups\",\"authors\":\"Huan Wang\",\"doi\":\"10.1556/012.2020.57.4.1477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a Schrödinger operator on the Heisenberg group , where is the sublaplacian on and the nonnegative potential V belongs to the reverse Hölder class with . Here is the homogeneous dimension of . Assume that is the heat semigroup generated by. The Lusin area integral and the Littlewood–Paley–Stein function associated with the Schrödinger operator are defined, respectively, bywhereandWhere is a parameter. In this article, the author shows that there is a relationship between and the operator and for any , the following inequality holds true:Based on this inequality and known results for the Lusin area integral , the author establishes the strong-type and weak-type estimates for the Littlewood–Paley–Stein function on . In this article, the author also introduces a class of Morrey spaces associated with the Schrödinger operator on . By using some pointwise estimates of the kernels related to the nonnegative potential V, the author establishes the boundedness properties of the operator acting on the Morrey spaces for an appropriate choice of . It can be shown that the same conclusions hold for the operator on generalized Morrey spaces as well.\",\"PeriodicalId\":51187,\"journal\":{\"name\":\"Studia Scientiarum Mathematicarum Hungarica\",\"volume\":\"29 1\",\"pages\":\"465-507\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Scientiarum Mathematicarum Hungarica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1556/012.2020.57.4.1477\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Scientiarum Mathematicarum Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1556/012.2020.57.4.1477","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设为海森堡群上的一个Schrödinger算子,其中为次拉普拉斯算子,非负势V属于反向的Hölder类。这是的齐次维数。假设是由产生的热半群。分别定义与Schrödinger算子相关的Lusin面积积分和littlewood - paly - stein函数,其中bywhereandWhere为参数。在本文中,作者证明了和算子之间存在一定的关系,并且对于任意一个算子,有以下不等式成立:基于这个不等式和Lusin区域积分的已知结果,作者建立了关于的littlewood - paly - stein函数的强型估计和弱型估计。在本文中,作者还介绍了与Schrödinger算子相关的一类Morrey空间。利用与非负势V有关的核的一些点估计,建立了作用于Morrey空间的算子的有界性,并给出了适当的选择。对于广义Morrey空间上的算子也可以得到相同的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Morrey Spaces Related to Schrödinger Operators with Certain Nonnegative Potentials and Littlewood–Paley–Stein Functions on the Heisenberg groups
Let be a Schrödinger operator on the Heisenberg group , where is the sublaplacian on and the nonnegative potential V belongs to the reverse Hölder class with . Here is the homogeneous dimension of . Assume that is the heat semigroup generated by. The Lusin area integral and the Littlewood–Paley–Stein function associated with the Schrödinger operator are defined, respectively, bywhereandWhere is a parameter. In this article, the author shows that there is a relationship between and the operator and for any , the following inequality holds true:Based on this inequality and known results for the Lusin area integral , the author establishes the strong-type and weak-type estimates for the Littlewood–Paley–Stein function on . In this article, the author also introduces a class of Morrey spaces associated with the Schrödinger operator on . By using some pointwise estimates of the kernels related to the nonnegative potential V, the author establishes the boundedness properties of the operator acting on the Morrey spaces for an appropriate choice of . It can be shown that the same conclusions hold for the operator on generalized Morrey spaces as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The journal publishes original research papers on various fields of mathematics, e.g., algebra, algebraic geometry, analysis, combinatorics, dynamical systems, geometry, mathematical logic, mathematical statistics, number theory, probability theory, set theory, statistical physics and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信