加权峰值比估计立体置信水平使用颜色相似

Sanghun Kim, C. Jang, Young Hwan Kim
{"title":"加权峰值比估计立体置信水平使用颜色相似","authors":"Sanghun Kim, C. Jang, Young Hwan Kim","doi":"10.1109/APCCAS.2016.7803931","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new stereo confidence metric, weighted peak ratio. Unlike existing confidence metrics, it computes the confidence level using the costs of surrounding pixels and given weights based on the color similarity between the pixels. In the experimental results, the proposed confidence metric showed better performance in detecting outliers compared to the state-of-the-art confidence metric, average peak ratio. Especially, the proposed metric is effective in object boundary regions.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"348 1","pages":"196-197"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weighted peak ratio for estimating stereo confidence level using color similarity\",\"authors\":\"Sanghun Kim, C. Jang, Young Hwan Kim\",\"doi\":\"10.1109/APCCAS.2016.7803931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new stereo confidence metric, weighted peak ratio. Unlike existing confidence metrics, it computes the confidence level using the costs of surrounding pixels and given weights based on the color similarity between the pixels. In the experimental results, the proposed confidence metric showed better performance in detecting outliers compared to the state-of-the-art confidence metric, average peak ratio. Especially, the proposed metric is effective in object boundary regions.\",\"PeriodicalId\":6495,\"journal\":{\"name\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"348 1\",\"pages\":\"196-197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2016.7803931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7803931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的立体置信度度量——加权峰值比。与现有的置信度度量不同,它使用周围像素的成本和基于像素之间颜色相似度的给定权重来计算置信度。实验结果表明,所提出的置信度指标在检测异常值方面表现出比目前最先进的置信度指标平均峰值比更好的性能。特别地,该度量在目标边界区域是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weighted peak ratio for estimating stereo confidence level using color similarity
In this paper, we propose a new stereo confidence metric, weighted peak ratio. Unlike existing confidence metrics, it computes the confidence level using the costs of surrounding pixels and given weights based on the color similarity between the pixels. In the experimental results, the proposed confidence metric showed better performance in detecting outliers compared to the state-of-the-art confidence metric, average peak ratio. Especially, the proposed metric is effective in object boundary regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信