同时具有亚波长限制光的光刻定义量子点

George Kountouris, Lea Vestergaard, Anne Sofie Darket, J. Mørk, P. Kristensen
{"title":"同时具有亚波长限制光的光刻定义量子点","authors":"George Kountouris, Lea Vestergaard, Anne Sofie Darket, J. Mørk, P. Kristensen","doi":"10.1109/cleo/europe-eqec57999.2023.10231441","DOIUrl":null,"url":null,"abstract":"Deterministic fabrication of quantum dots in optical devices is a long-standing challenge for future integrated photonics and electronics applications. Current approaches typically rely on alignment or transfer techniques [1], but the scalability is limited by the unavoidable introduction of uncertainty in both the geometry and the positioning of the dots. In this work, we present a lithographically defined quantum dot integrated with a nanostructured optical cavity with sub-wavelength confinement of light. The design is based on an optical bowtie cavity [2] in an InP dielectric membrane with an embedded InGaAsP quantum well. By modifying the central bowtie geometry, the structure can be made to support localized electron-hole states in the region of the optical hotspot. The concept is illustrated in Fig. 1.","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"13 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lithographically Defined Quantum Dot with Simultaneous Sub-Wavelength Confinement of Light\",\"authors\":\"George Kountouris, Lea Vestergaard, Anne Sofie Darket, J. Mørk, P. Kristensen\",\"doi\":\"10.1109/cleo/europe-eqec57999.2023.10231441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterministic fabrication of quantum dots in optical devices is a long-standing challenge for future integrated photonics and electronics applications. Current approaches typically rely on alignment or transfer techniques [1], but the scalability is limited by the unavoidable introduction of uncertainty in both the geometry and the positioning of the dots. In this work, we present a lithographically defined quantum dot integrated with a nanostructured optical cavity with sub-wavelength confinement of light. The design is based on an optical bowtie cavity [2] in an InP dielectric membrane with an embedded InGaAsP quantum well. By modifying the central bowtie geometry, the structure can be made to support localized electron-hole states in the region of the optical hotspot. The concept is illustrated in Fig. 1.\",\"PeriodicalId\":19477,\"journal\":{\"name\":\"Oceans\",\"volume\":\"13 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cleo/europe-eqec57999.2023.10231441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cleo/europe-eqec57999.2023.10231441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光学器件中量子点的确定性制造是未来集成光子学和电子学应用的长期挑战。目前的方法通常依赖于对齐或转移技术[1],但可扩展性受到不可避免地引入的几何形状和点的定位不确定性的限制。在这项工作中,我们提出了一个光刻定义的量子点与具有亚波长限制的光的纳米结构光学腔集成。该设计基于在InP介电膜中嵌入InGaAsP量子阱的光学领结腔[2]。通过改变中心领结的几何形状,可以使该结构在光学热点区域支持局域电子空穴态。这个概念如图1所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lithographically Defined Quantum Dot with Simultaneous Sub-Wavelength Confinement of Light
Deterministic fabrication of quantum dots in optical devices is a long-standing challenge for future integrated photonics and electronics applications. Current approaches typically rely on alignment or transfer techniques [1], but the scalability is limited by the unavoidable introduction of uncertainty in both the geometry and the positioning of the dots. In this work, we present a lithographically defined quantum dot integrated with a nanostructured optical cavity with sub-wavelength confinement of light. The design is based on an optical bowtie cavity [2] in an InP dielectric membrane with an embedded InGaAsP quantum well. By modifying the central bowtie geometry, the structure can be made to support localized electron-hole states in the region of the optical hotspot. The concept is illustrated in Fig. 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信