A. E. Haryati, S. Sugiyarto, Rizki Desia Arindra Putri
{"title":"模糊减法聚类与模糊均值的比较","authors":"A. E. Haryati, S. Sugiyarto, Rizki Desia Arindra Putri","doi":"10.21107/KURSOR.V11I1.254","DOIUrl":null,"url":null,"abstract":"Multivariate statistics have related problems with large data dimensions. One method that can be used is principal component analysis (PCA). Principal component analysis (PCA) is a technique used to reduce data dimensions consisting of several dependent variables while maintaining variance in the data. PCA can be used to stabilize measurements in statistical analysis, one of which is cluster analysis. Fuzzy clustering is a method of grouping based on membership values that includes fuzzy sets as a weighting basis for grouping. In this study, the fuzzy clustering method used is Fuzzy Subtractive Clustering (FSC) and Fuzzy C-Means (FCM) with a combination of the Minkowski Chebysev distance. The purpose of this study was to compare the cluster results obtained from the FSC and FCM using the DBI validity index. The results obtained indicate that the results of clustering using FCM are better than the FSC.","PeriodicalId":52605,"journal":{"name":"Jurnal Ilmiah Kursor Menuju Solusi Teknologi Informasi","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"COMPARISON OF FUZZY SUBTRACTIVE CLUSTERING AND FUZZYC-MEANS\",\"authors\":\"A. E. Haryati, S. Sugiyarto, Rizki Desia Arindra Putri\",\"doi\":\"10.21107/KURSOR.V11I1.254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate statistics have related problems with large data dimensions. One method that can be used is principal component analysis (PCA). Principal component analysis (PCA) is a technique used to reduce data dimensions consisting of several dependent variables while maintaining variance in the data. PCA can be used to stabilize measurements in statistical analysis, one of which is cluster analysis. Fuzzy clustering is a method of grouping based on membership values that includes fuzzy sets as a weighting basis for grouping. In this study, the fuzzy clustering method used is Fuzzy Subtractive Clustering (FSC) and Fuzzy C-Means (FCM) with a combination of the Minkowski Chebysev distance. The purpose of this study was to compare the cluster results obtained from the FSC and FCM using the DBI validity index. The results obtained indicate that the results of clustering using FCM are better than the FSC.\",\"PeriodicalId\":52605,\"journal\":{\"name\":\"Jurnal Ilmiah Kursor Menuju Solusi Teknologi Informasi\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah Kursor Menuju Solusi Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21107/KURSOR.V11I1.254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Kursor Menuju Solusi Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/KURSOR.V11I1.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
COMPARISON OF FUZZY SUBTRACTIVE CLUSTERING AND FUZZYC-MEANS
Multivariate statistics have related problems with large data dimensions. One method that can be used is principal component analysis (PCA). Principal component analysis (PCA) is a technique used to reduce data dimensions consisting of several dependent variables while maintaining variance in the data. PCA can be used to stabilize measurements in statistical analysis, one of which is cluster analysis. Fuzzy clustering is a method of grouping based on membership values that includes fuzzy sets as a weighting basis for grouping. In this study, the fuzzy clustering method used is Fuzzy Subtractive Clustering (FSC) and Fuzzy C-Means (FCM) with a combination of the Minkowski Chebysev distance. The purpose of this study was to compare the cluster results obtained from the FSC and FCM using the DBI validity index. The results obtained indicate that the results of clustering using FCM are better than the FSC.