关于静态液化触发评估的一些不确定因素

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Reid, Simon Dickinson, U. Mital, R. Fanni, A. Fourie
{"title":"关于静态液化触发评估的一些不确定因素","authors":"D. Reid, Simon Dickinson, U. Mital, R. Fanni, A. Fourie","doi":"10.1680/jgeen.21.00054","DOIUrl":null,"url":null,"abstract":"Static liquefaction has been identified as the cause of several recent tailings storage facility (TSF) failures. Partially based on the investigations carried out, significant advances on the analysis of static liquefaction triggering have been made. This includes application of critical state-based models in a stress-deformation framework to identify if in situ conditions are approaching a level where triggering could occur. However, several important uncertainties remain. The current work investigates three of these uncertainties and their effect (both independently, and in conjunction) on the identification of static liquefaction triggering and slope failure: geostatic stress ratio K0, intermediate principal stress ratio, and principal stress angle from vertical. These uncertainties are examined through a series of numerical analyses of an idealised TSF. Various values of K0 are used to examine their effect on triggering, while different approaches to the potential effect of intermediate principal stress ratio and principal stress angle from vertical on instability are taken. This work shows that current state of knowledge in these areas is such that significant uncertainty seems unavoidable in attempting to identify exactly when a particular slope may undergo static liquefaction triggering. Experimental and in situ test programs that may be useful in reducing this uncertainty are outlined.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On some uncertainties related to static liquefaction triggering assessments\",\"authors\":\"D. Reid, Simon Dickinson, U. Mital, R. Fanni, A. Fourie\",\"doi\":\"10.1680/jgeen.21.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static liquefaction has been identified as the cause of several recent tailings storage facility (TSF) failures. Partially based on the investigations carried out, significant advances on the analysis of static liquefaction triggering have been made. This includes application of critical state-based models in a stress-deformation framework to identify if in situ conditions are approaching a level where triggering could occur. However, several important uncertainties remain. The current work investigates three of these uncertainties and their effect (both independently, and in conjunction) on the identification of static liquefaction triggering and slope failure: geostatic stress ratio K0, intermediate principal stress ratio, and principal stress angle from vertical. These uncertainties are examined through a series of numerical analyses of an idealised TSF. Various values of K0 are used to examine their effect on triggering, while different approaches to the potential effect of intermediate principal stress ratio and principal stress angle from vertical on instability are taken. This work shows that current state of knowledge in these areas is such that significant uncertainty seems unavoidable in attempting to identify exactly when a particular slope may undergo static liquefaction triggering. Experimental and in situ test programs that may be useful in reducing this uncertainty are outlined.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jgeen.21.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jgeen.21.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

摘要

静态液化已被确定为最近几起尾矿储存设施(TSF)故障的原因。部分基于所进行的研究,在静态液化触发分析方面取得了重大进展。这包括在应力变形框架中应用基于临界状态的模型,以确定原位条件是否接近可能发生触发的水平。然而,一些重要的不确定性仍然存在。目前的工作研究了这些不确定性中的三个及其对静态液化触发和边坡破坏识别的影响(包括独立的和联合的):地静应力比K0,中间主应力比和垂直方向的主应力角。通过对理想TSF的一系列数值分析来检验这些不确定性。利用不同的K0值考察了它们对触发的影响,并对中间主应力比和垂直方向主应力角对失稳的潜在影响采取了不同的方法。这项工作表明,目前在这些领域的知识状况是这样的,在试图准确确定特定斜坡何时可能经历静态液化触发时,显着的不确定性似乎是不可避免的。概述了可能有助于减少这种不确定性的实验和原位测试程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some uncertainties related to static liquefaction triggering assessments
Static liquefaction has been identified as the cause of several recent tailings storage facility (TSF) failures. Partially based on the investigations carried out, significant advances on the analysis of static liquefaction triggering have been made. This includes application of critical state-based models in a stress-deformation framework to identify if in situ conditions are approaching a level where triggering could occur. However, several important uncertainties remain. The current work investigates three of these uncertainties and their effect (both independently, and in conjunction) on the identification of static liquefaction triggering and slope failure: geostatic stress ratio K0, intermediate principal stress ratio, and principal stress angle from vertical. These uncertainties are examined through a series of numerical analyses of an idealised TSF. Various values of K0 are used to examine their effect on triggering, while different approaches to the potential effect of intermediate principal stress ratio and principal stress angle from vertical on instability are taken. This work shows that current state of knowledge in these areas is such that significant uncertainty seems unavoidable in attempting to identify exactly when a particular slope may undergo static liquefaction triggering. Experimental and in situ test programs that may be useful in reducing this uncertainty are outlined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信