物理学-室内Wi-Fi接入点放置的知情机器学习模型

Dongfang Cui, Guoli Yang, Shichen Ji, Shuyang Luo, Aristeidis Seretis, C. Sarris
{"title":"物理学-室内Wi-Fi接入点放置的知情机器学习模型","authors":"Dongfang Cui, Guoli Yang, Shichen Ji, Shuyang Luo, Aristeidis Seretis, C. Sarris","doi":"10.1109/APS/URSI47566.2021.9704654","DOIUrl":null,"url":null,"abstract":"One of the main challenges in optimally placing indoor Wi-Fi access points in a complex indoor environment is the estimation of the received signal strength (RSS) given different access point locations. This paper proposes a deep learning approach, a modification to the classic Deep Convolutional Generative Adversarial Network (DCGAN), to generate accurate power maps for a specific indoor geometry. It has been demonstrated that this model consistently outperforms a benchmark ray-tracing simulator in efficiency, maintaining a comparable accuracy.","PeriodicalId":6801,"journal":{"name":"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)","volume":"84 1","pages":"227-228"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics- Informed Machine Learning Models for Indoor Wi-Fi Access Point Placement\",\"authors\":\"Dongfang Cui, Guoli Yang, Shichen Ji, Shuyang Luo, Aristeidis Seretis, C. Sarris\",\"doi\":\"10.1109/APS/URSI47566.2021.9704654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges in optimally placing indoor Wi-Fi access points in a complex indoor environment is the estimation of the received signal strength (RSS) given different access point locations. This paper proposes a deep learning approach, a modification to the classic Deep Convolutional Generative Adversarial Network (DCGAN), to generate accurate power maps for a specific indoor geometry. It has been demonstrated that this model consistently outperforms a benchmark ray-tracing simulator in efficiency, maintaining a comparable accuracy.\",\"PeriodicalId\":6801,\"journal\":{\"name\":\"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)\",\"volume\":\"84 1\",\"pages\":\"227-228\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS/URSI47566.2021.9704654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS/URSI47566.2021.9704654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在复杂的室内环境中优化室内Wi-Fi接入点的主要挑战之一是在不同接入点位置下估计接收到的信号强度(RSS)。本文提出了一种深度学习方法,对经典的深度卷积生成对抗网络(DCGAN)进行了修改,以生成特定室内几何形状的精确功率图。已经证明,该模型在效率上始终优于基准光线跟踪模拟器,并保持相当的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics- Informed Machine Learning Models for Indoor Wi-Fi Access Point Placement
One of the main challenges in optimally placing indoor Wi-Fi access points in a complex indoor environment is the estimation of the received signal strength (RSS) given different access point locations. This paper proposes a deep learning approach, a modification to the classic Deep Convolutional Generative Adversarial Network (DCGAN), to generate accurate power maps for a specific indoor geometry. It has been demonstrated that this model consistently outperforms a benchmark ray-tracing simulator in efficiency, maintaining a comparable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信