{"title":"无线仿生神经链数字系统设计","authors":"Peng Li, Lei Yao, M. Je","doi":"10.1109/IMWS-BIO.2013.6756238","DOIUrl":null,"url":null,"abstract":"This paper describes the digital system for neural recording and stimulation, which is designed for bionic neural link (BNL). The digital design for neural recording converts the multi-channel neural spikes as one trigger command and sends out via wireless channel. The digital stimulation design generates the adaptive arbitrary waveform to stimulate the muscle when a trigger signal comes. The digital system is designed in a 0.18 μm CMOS process and the power of the digital system for neural recording and stimulation chip is 80 μW and 130 μW with supplying by 1.8V voltage, respectively.","PeriodicalId":6321,"journal":{"name":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","volume":"24 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital system design for wireless bionic neural link\",\"authors\":\"Peng Li, Lei Yao, M. Je\",\"doi\":\"10.1109/IMWS-BIO.2013.6756238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the digital system for neural recording and stimulation, which is designed for bionic neural link (BNL). The digital design for neural recording converts the multi-channel neural spikes as one trigger command and sends out via wireless channel. The digital stimulation design generates the adaptive arbitrary waveform to stimulate the muscle when a trigger signal comes. The digital system is designed in a 0.18 μm CMOS process and the power of the digital system for neural recording and stimulation chip is 80 μW and 130 μW with supplying by 1.8V voltage, respectively.\",\"PeriodicalId\":6321,\"journal\":{\"name\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"volume\":\"24 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS-BIO.2013.6756238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS-BIO.2013.6756238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Digital system design for wireless bionic neural link
This paper describes the digital system for neural recording and stimulation, which is designed for bionic neural link (BNL). The digital design for neural recording converts the multi-channel neural spikes as one trigger command and sends out via wireless channel. The digital stimulation design generates the adaptive arbitrary waveform to stimulate the muscle when a trigger signal comes. The digital system is designed in a 0.18 μm CMOS process and the power of the digital system for neural recording and stimulation chip is 80 μW and 130 μW with supplying by 1.8V voltage, respectively.