{"title":"具有随机卷客户和分区无限内存缓冲区的排队系统","authors":"O. Tikhonenko, M. Ziółkowski, W. Kempa","doi":"10.34768/amcs-2021-0032","DOIUrl":null,"url":null,"abstract":"Abstract In the present paper, we concentrate on basic concepts connected with the theory of queueing systems with random volume customers and a sectorized unlimited memory buffer. In such systems, the arriving customers are additionally characterized by a non-negative random volume vector. The vector’s indications can be understood as the sizes of portions of information of a different type that are located in the sectors of memory space of the system during customers’ sojourn in it. This information does not change while a customer is present in the system. After service termination, information immediately leaves the buffer, releasing its resources. In analyzed models, the service time of a customer is assumed to be dependent on his volume vector characteristics, which has influence on the total volume vector distribution. We investigate three types of such queueing systems: the Erlang queueing system, the single-server queueing system with unlimited queue and the egalitarian processor sharing system. For these models, we obtain a joint distribution function of the total volume vector in terms of Laplace (or Laplace–Stieltjes) transforms and formulae for steady-state initial mixed moments of the analyzed random vector, in the case when the memory buffer is composed of two sectors. We also calculate these characteristics for some practical case in which the service time of a customer is proportional to the customer’s length (understood as the sum of the volume vector’s indications). Moreover, we present some numerical computations illustrating theoretical results.","PeriodicalId":50339,"journal":{"name":"International Journal of Applied Mathematics and Computer Science","volume":"64 1","pages":"471 - 486"},"PeriodicalIF":1.6000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Queueing Systems with Random Volume Customers and a Sectorized Unlimited Memory Buffer\",\"authors\":\"O. Tikhonenko, M. Ziółkowski, W. Kempa\",\"doi\":\"10.34768/amcs-2021-0032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the present paper, we concentrate on basic concepts connected with the theory of queueing systems with random volume customers and a sectorized unlimited memory buffer. In such systems, the arriving customers are additionally characterized by a non-negative random volume vector. The vector’s indications can be understood as the sizes of portions of information of a different type that are located in the sectors of memory space of the system during customers’ sojourn in it. This information does not change while a customer is present in the system. After service termination, information immediately leaves the buffer, releasing its resources. In analyzed models, the service time of a customer is assumed to be dependent on his volume vector characteristics, which has influence on the total volume vector distribution. We investigate three types of such queueing systems: the Erlang queueing system, the single-server queueing system with unlimited queue and the egalitarian processor sharing system. For these models, we obtain a joint distribution function of the total volume vector in terms of Laplace (or Laplace–Stieltjes) transforms and formulae for steady-state initial mixed moments of the analyzed random vector, in the case when the memory buffer is composed of two sectors. We also calculate these characteristics for some practical case in which the service time of a customer is proportional to the customer’s length (understood as the sum of the volume vector’s indications). Moreover, we present some numerical computations illustrating theoretical results.\",\"PeriodicalId\":50339,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Science\",\"volume\":\"64 1\",\"pages\":\"471 - 486\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.34768/amcs-2021-0032\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.34768/amcs-2021-0032","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Queueing Systems with Random Volume Customers and a Sectorized Unlimited Memory Buffer
Abstract In the present paper, we concentrate on basic concepts connected with the theory of queueing systems with random volume customers and a sectorized unlimited memory buffer. In such systems, the arriving customers are additionally characterized by a non-negative random volume vector. The vector’s indications can be understood as the sizes of portions of information of a different type that are located in the sectors of memory space of the system during customers’ sojourn in it. This information does not change while a customer is present in the system. After service termination, information immediately leaves the buffer, releasing its resources. In analyzed models, the service time of a customer is assumed to be dependent on his volume vector characteristics, which has influence on the total volume vector distribution. We investigate three types of such queueing systems: the Erlang queueing system, the single-server queueing system with unlimited queue and the egalitarian processor sharing system. For these models, we obtain a joint distribution function of the total volume vector in terms of Laplace (or Laplace–Stieltjes) transforms and formulae for steady-state initial mixed moments of the analyzed random vector, in the case when the memory buffer is composed of two sectors. We also calculate these characteristics for some practical case in which the service time of a customer is proportional to the customer’s length (understood as the sum of the volume vector’s indications). Moreover, we present some numerical computations illustrating theoretical results.
期刊介绍:
The International Journal of Applied Mathematics and Computer Science is a quarterly published in Poland since 1991 by the University of Zielona Góra in partnership with De Gruyter Poland (Sciendo) and Lubuskie Scientific Society, under the auspices of the Committee on Automatic Control and Robotics of the Polish Academy of Sciences.
The journal strives to meet the demand for the presentation of interdisciplinary research in various fields related to control theory, applied mathematics, scientific computing and computer science. In particular, it publishes high quality original research results in the following areas:
-modern control theory and practice-
artificial intelligence methods and their applications-
applied mathematics and mathematical optimisation techniques-
mathematical methods in engineering, computer science, and biology.