动态广义最接近对:重访Eppstein技术

Timothy M. Chan
{"title":"动态广义最接近对:重访Eppstein技术","authors":"Timothy M. Chan","doi":"10.1137/1.9781611976014.6","DOIUrl":null,"url":null,"abstract":"Eppstein (1995) gave a technique to transform any data structure for dynamic nearest neighbor queries into a data structure for dynamic closest pair, for any distance function; the transformation increases the time bound by two logarithmic factors. We present a similar, simple transformation that is just as good, and can avoid the extra logarithmic factors when the query and update time of the given structure exceed n for some constant ε > 0. Consequently, in the case of an arbitrary distance function, we obtain an optimal O(n)-space data structure to maintain the dynamic closest pair of n points in O(n) amortized time plus O(n) distance evaluations per update.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"16 1","pages":"33-37"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dynamic Generalized Closest Pair: Revisiting Eppstein's Technique\",\"authors\":\"Timothy M. Chan\",\"doi\":\"10.1137/1.9781611976014.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eppstein (1995) gave a technique to transform any data structure for dynamic nearest neighbor queries into a data structure for dynamic closest pair, for any distance function; the transformation increases the time bound by two logarithmic factors. We present a similar, simple transformation that is just as good, and can avoid the extra logarithmic factors when the query and update time of the given structure exceed n for some constant ε > 0. Consequently, in the case of an arbitrary distance function, we obtain an optimal O(n)-space data structure to maintain the dynamic closest pair of n points in O(n) amortized time plus O(n) distance evaluations per update.\",\"PeriodicalId\":93491,\"journal\":{\"name\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"volume\":\"16 1\",\"pages\":\"33-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611976014.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976014.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

Eppstein(1995)给出了一种技术,将动态最近邻查询的任何数据结构转换为动态最近邻对的数据结构,适用于任何距离函数;变换使时间范围增加了两个对数因子。我们提出了一个类似的,简单的变换,它同样很好,并且可以避免当给定结构的查询和更新时间超过n时,对于某些常数ε > 0时,额外的对数因子。因此,在任意距离函数的情况下,我们获得了最优的O(n)空间数据结构,以在O(n)平摊时间加上每次更新O(n)次距离评估中保持n个点的动态最近对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Generalized Closest Pair: Revisiting Eppstein's Technique
Eppstein (1995) gave a technique to transform any data structure for dynamic nearest neighbor queries into a data structure for dynamic closest pair, for any distance function; the transformation increases the time bound by two logarithmic factors. We present a similar, simple transformation that is just as good, and can avoid the extra logarithmic factors when the query and update time of the given structure exceed n for some constant ε > 0. Consequently, in the case of an arbitrary distance function, we obtain an optimal O(n)-space data structure to maintain the dynamic closest pair of n points in O(n) amortized time plus O(n) distance evaluations per update.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信