求解分数阶微分方程的一种新的数值方法,在caputo-fabrizio导数意义上

IF 0.5 Q3 MATHEMATICS
Leila Moghadam Dizaj Herik, M. Javidi, M. Shafiee
{"title":"求解分数阶微分方程的一种新的数值方法,在caputo-fabrizio导数意义上","authors":"Leila Moghadam Dizaj Herik, M. Javidi, M. Shafiee","doi":"10.22190/fumi210105006m","DOIUrl":null,"url":null,"abstract":"In this paper, fractional differential equations in the sense of Caputo-Fabrizio derivative are transformed into integral equations. Then a high order numerical method for the integral equation is investigated by approximating the integrand with a piece-wise quadratic interpolant. The scheme is capable of handling both linear and nonlinear fractional differential equations. A detailed error analysis and stability region of the numerical scheme is rigorously established.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"114 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS IN THE SENSE OF CAPUTO-FABRIZIO DERIVATIVE\",\"authors\":\"Leila Moghadam Dizaj Herik, M. Javidi, M. Shafiee\",\"doi\":\"10.22190/fumi210105006m\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, fractional differential equations in the sense of Caputo-Fabrizio derivative are transformed into integral equations. Then a high order numerical method for the integral equation is investigated by approximating the integrand with a piece-wise quadratic interpolant. The scheme is capable of handling both linear and nonlinear fractional differential equations. A detailed error analysis and stability region of the numerical scheme is rigorously established.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/fumi210105006m\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/fumi210105006m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将Caputo-Fabrizio导数意义上的分数阶微分方程转化为积分方程。然后用分段二次插值逼近被积函数,研究了求解积分方程的高阶数值方法。该格式能够处理线性和非线性分数阶微分方程。严格建立了数值格式的详细误差分析和稳定区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL NEW NUMERICAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS IN THE SENSE OF CAPUTO-FABRIZIO DERIVATIVE
In this paper, fractional differential equations in the sense of Caputo-Fabrizio derivative are transformed into integral equations. Then a high order numerical method for the integral equation is investigated by approximating the integrand with a piece-wise quadratic interpolant. The scheme is capable of handling both linear and nonlinear fractional differential equations. A detailed error analysis and stability region of the numerical scheme is rigorously established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信