肿瘤球体几乎具有周期性的营养和抑制剂供应

IF 2.3 4区 工程技术 Q1 MATHEMATICS, APPLIED
H. Díaz-Marín, O. Osuna
{"title":"肿瘤球体几乎具有周期性的营养和抑制剂供应","authors":"H. Díaz-Marín, O. Osuna","doi":"10.1002/zamm.202200228","DOIUrl":null,"url":null,"abstract":"We describe the time‐evolution of a tumor spheroid without necrotic core using the quasi‐stationary reaction–diffusion approach. We assume that inhibitor and nutrient supplies are time‐dependent and oscillating by incorporating continuous almost periodic functions in the model. The functional form of the intensity of the mitosis is supposed to be the product of two linear functions depending on the nutrient concentration σ and of the inhibitor concentration, β, respectively. Under some mild conditions, we give criteria predicting two possible global asymptotic limits: either the tumor oscillates converging towards a stable global almost periodic solution or the tumor shrinks as time increases.","PeriodicalId":23924,"journal":{"name":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumor spheroid with almost periodic nutrient and inhibitor supplies\",\"authors\":\"H. Díaz-Marín, O. Osuna\",\"doi\":\"10.1002/zamm.202200228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the time‐evolution of a tumor spheroid without necrotic core using the quasi‐stationary reaction–diffusion approach. We assume that inhibitor and nutrient supplies are time‐dependent and oscillating by incorporating continuous almost periodic functions in the model. The functional form of the intensity of the mitosis is supposed to be the product of two linear functions depending on the nutrient concentration σ and of the inhibitor concentration, β, respectively. Under some mild conditions, we give criteria predicting two possible global asymptotic limits: either the tumor oscillates converging towards a stable global almost periodic solution or the tumor shrinks as time increases.\",\"PeriodicalId\":23924,\"journal\":{\"name\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202200228\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/zamm.202200228","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们使用准平稳反应扩散方法描述了无坏死核心的肿瘤球体的时间演化。我们假设抑制剂和营养供应是时间依赖的,并且通过在模型中加入连续的几乎周期函数来振荡。有丝分裂强度的函数形式应该是两个分别依赖于营养物浓度σ和抑制剂浓度β的线性函数的乘积。在一些温和的条件下,我们给出了预测两种可能的全局渐近极限的准则:肿瘤振荡收敛于稳定的全局概周期解或肿瘤随着时间的增加而缩小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tumor spheroid with almost periodic nutrient and inhibitor supplies
We describe the time‐evolution of a tumor spheroid without necrotic core using the quasi‐stationary reaction–diffusion approach. We assume that inhibitor and nutrient supplies are time‐dependent and oscillating by incorporating continuous almost periodic functions in the model. The functional form of the intensity of the mitosis is supposed to be the product of two linear functions depending on the nutrient concentration σ and of the inhibitor concentration, β, respectively. Under some mild conditions, we give criteria predicting two possible global asymptotic limits: either the tumor oscillates converging towards a stable global almost periodic solution or the tumor shrinks as time increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
8.70%
发文量
199
审稿时长
3.0 months
期刊介绍: ZAMM is one of the oldest journals in the field of applied mathematics and mechanics and is read by scientists all over the world. The aim and scope of ZAMM is the publication of new results and review articles and information on applied mathematics (mainly numerical mathematics and various applications of analysis, in particular numerical aspects of differential and integral equations), on the entire field of theoretical and applied mechanics (solid mechanics, fluid mechanics, thermodynamics). ZAMM is also open to essential contributions on mathematics in industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信