哥德式teichm曲线的欧拉特性

IF 2 1区 数学
M. Moller, David Torres-Teigell
{"title":"哥德式teichm<e:1>曲线的欧拉特性","authors":"M. Moller, David Torres-Teigell","doi":"10.2140/GT.2020.24.1149","DOIUrl":null,"url":null,"abstract":"We compute the Euler characteristics of the recently discovered series of Gothic Teichmuller curves. The main tool is the construction of 'Gothic' Hilbert modular forms vanishing at the images of these Teichmuller curves. Contrary to all previously known examples, the Euler characteristic is not proportional to the Euler characteristic of the ambient Hilbert modular surfaces. This results in interesting 'varying' phenomena for Lyapunov exponents.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"45 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Euler characteristics of Gothic Teichmüller\\ncurves\",\"authors\":\"M. Moller, David Torres-Teigell\",\"doi\":\"10.2140/GT.2020.24.1149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the Euler characteristics of the recently discovered series of Gothic Teichmuller curves. The main tool is the construction of 'Gothic' Hilbert modular forms vanishing at the images of these Teichmuller curves. Contrary to all previously known examples, the Euler characteristic is not proportional to the Euler characteristic of the ambient Hilbert modular surfaces. This results in interesting 'varying' phenomena for Lyapunov exponents.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GT.2020.24.1149\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2020.24.1149","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们计算了最近发现的哥特曲线系列的欧拉特性。主要的工具是建造“哥特式”希尔伯特模形式,消失在这些Teichmuller曲线的图像上。与所有已知的例子相反,欧拉特性与周围希尔伯特模曲面的欧拉特性不成比例。这导致了李雅普诺夫指数有趣的“变化”现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euler characteristics of Gothic Teichmüller curves
We compute the Euler characteristics of the recently discovered series of Gothic Teichmuller curves. The main tool is the construction of 'Gothic' Hilbert modular forms vanishing at the images of these Teichmuller curves. Contrary to all previously known examples, the Euler characteristic is not proportional to the Euler characteristic of the ambient Hilbert modular surfaces. This results in interesting 'varying' phenomena for Lyapunov exponents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信