Turán跨越星林的数量

IF 0.5 4区 数学 Q3 MATHEMATICS
Lin-Peng Zhang, Ligong Wang, Jiale Zhou
{"title":"Turán跨越星林的数量","authors":"Lin-Peng Zhang, Ligong Wang, Jiale Zhou","doi":"10.7151/dmgt.2368","DOIUrl":null,"url":null,"abstract":"Let F be a family of graphs. The Turán number of F , denoted by ex(n,F), is the maximum number of edges in a graph with n vertices which does not contain any subgraph isomorphic to some graph in F . A star forest is a forest whose connected components are all stars and isolated vertices. Motivated by the results of Wang, Yang and Ning about the spanning Turán number of linear forests [J. Wang and W. Yang, The Turán number for spanning linear forests, Discrete Appl. Math. 254 (2019) 291–294; B. Ning and J. Wang, The formula for Turán number of spanning linear forests, Discrete Math. 343 (2020) 111924]. In this paper, let Sn,k be the set of all star forests with n vertices and k edges. We prove that when 1 ≤ k ≤ n− 1, ex(n,Sn,k) = ⌊ k−1 2 ⌋ .","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"120 1","pages":"303-312"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Turán number of spanning star forests\",\"authors\":\"Lin-Peng Zhang, Ligong Wang, Jiale Zhou\",\"doi\":\"10.7151/dmgt.2368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F be a family of graphs. The Turán number of F , denoted by ex(n,F), is the maximum number of edges in a graph with n vertices which does not contain any subgraph isomorphic to some graph in F . A star forest is a forest whose connected components are all stars and isolated vertices. Motivated by the results of Wang, Yang and Ning about the spanning Turán number of linear forests [J. Wang and W. Yang, The Turán number for spanning linear forests, Discrete Appl. Math. 254 (2019) 291–294; B. Ning and J. Wang, The formula for Turán number of spanning linear forests, Discrete Math. 343 (2020) 111924]. In this paper, let Sn,k be the set of all star forests with n vertices and k edges. We prove that when 1 ≤ k ≤ n− 1, ex(n,Sn,k) = ⌊ k−1 2 ⌋ .\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"120 1\",\"pages\":\"303-312\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2368\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2368","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设F是一个图族。F的Turán个数,用ex(n,F)表示,是一个有n个顶点的图中不包含与F中某个图同构的任何子图的最大边数。星林是一个连接的组件都是星和孤立顶点的森林。受Wang, Yang和Ning关于线性森林跨越Turán数量的结果的启发[J]。王伟,杨伟,Turán跨越线性森林数,计算机学报。数学。254 (2019)291-294;宁斌,王军。Turán线性森林跨越数的计算公式[j].离散数学,343(2020):111924。本文设Sn,k为具有n个顶点和k条边的所有星林的集合。证明了当1≤k≤n−1时,ex(n,Sn,k) =⌊k−12⌋。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Turán number of spanning star forests
Let F be a family of graphs. The Turán number of F , denoted by ex(n,F), is the maximum number of edges in a graph with n vertices which does not contain any subgraph isomorphic to some graph in F . A star forest is a forest whose connected components are all stars and isolated vertices. Motivated by the results of Wang, Yang and Ning about the spanning Turán number of linear forests [J. Wang and W. Yang, The Turán number for spanning linear forests, Discrete Appl. Math. 254 (2019) 291–294; B. Ning and J. Wang, The formula for Turán number of spanning linear forests, Discrete Math. 343 (2020) 111924]. In this paper, let Sn,k be the set of all star forests with n vertices and k edges. We prove that when 1 ≤ k ≤ n− 1, ex(n,Sn,k) = ⌊ k−1 2 ⌋ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信