具有环面消失理想的对称彩色高斯图形模型

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Jane Ivy Coons, Aida Maraj, Pratik Misra, Miruna-Stefana Sorea
{"title":"具有环面消失理想的对称彩色高斯图形模型","authors":"Jane Ivy Coons, Aida Maraj, Pratik Misra, Miruna-Stefana Sorea","doi":"10.1137/21M1466943","DOIUrl":null,"url":null,"abstract":"A colored Gaussian graphical model is a linear concentration model in which equalities among the concentrations are specified by a coloring of an underlying graph. The model is called RCOP if this coloring is given by the edge and vertex orbits of a subgroup of the automorphism group of the graph. We show that RCOP Gaussian graphical models on block graphs are toric in the space of covariance matrices and we describe Markov bases for them. To this end, we learn more about the combinatorial structure of these models and their connection with Jordan algebras.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symmetrically Colored Gaussian Graphical Models with Toric Vanishing Ideals\",\"authors\":\"Jane Ivy Coons, Aida Maraj, Pratik Misra, Miruna-Stefana Sorea\",\"doi\":\"10.1137/21M1466943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A colored Gaussian graphical model is a linear concentration model in which equalities among the concentrations are specified by a coloring of an underlying graph. The model is called RCOP if this coloring is given by the edge and vertex orbits of a subgroup of the automorphism group of the graph. We show that RCOP Gaussian graphical models on block graphs are toric in the space of covariance matrices and we describe Markov bases for them. To this end, we learn more about the combinatorial structure of these models and their connection with Jordan algebras.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/21M1466943\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/21M1466943","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

有色高斯图形模型是一种线性浓度模型,其中浓度之间的等式通过底层图形的着色来指定。如果这种着色是由图的自同构群的一个子群的边和顶点轨道给出的,则该模型称为RCOP。我们证明了块图上的RCOP高斯图形模型在协方差矩阵空间上是环面的,并描述了它们的马尔可夫基。为此,我们更多地了解了这些模型的组合结构以及它们与Jordan代数的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetrically Colored Gaussian Graphical Models with Toric Vanishing Ideals
A colored Gaussian graphical model is a linear concentration model in which equalities among the concentrations are specified by a coloring of an underlying graph. The model is called RCOP if this coloring is given by the edge and vertex orbits of a subgroup of the automorphism group of the graph. We show that RCOP Gaussian graphical models on block graphs are toric in the space of covariance matrices and we describe Markov bases for them. To this end, we learn more about the combinatorial structure of these models and their connection with Jordan algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信