采用基于合作过滤的方法,为未来买家提供智能手机配件

B. Prasetyo, Hanny Haryanto, Setia Astuti, Erna Zuni Astuti, Yuniarsi Rahayu
{"title":"采用基于合作过滤的方法,为未来买家提供智能手机配件","authors":"B. Prasetyo, Hanny Haryanto, Setia Astuti, Erna Zuni Astuti, Yuniarsi Rahayu","doi":"10.30864/eksplora.v9i1.244","DOIUrl":null,"url":null,"abstract":"Flazzstore merupakan sebuah toko yang bergerak dibidang penjualan casing smartphone. Terdapat banyak produk yang berbeda-beda dengan banyak tema yang berbeda pula, hal ini membuat beberapa user kesulitan dalam menentukan pilihan mengenai produk yang akan dipilih. Perlunya sebuah sistem rekomendasi yang mampu memberikan rekomendasi produk kepada user, untuk memudahkan user dalam memilih produk yang akan dibelinya. Penelitian ini menggunakan metode Item-Based Collaborative Filtering, metode ini mencari similarity/kesamaan item dengan item lainnya. Sistem akan mencari rating tiap item dan menghitung nilai similarity menggunakan persamaan pearson correlation-based similarity. Kemudian nilai dari hasil perhitungan similarity akan digunakan untuk menghitung nilai prediksi tiap produk dengan menggunakan persamaan weighted average of deviation. Sebelum direkomendasikan kepada pelanggan dari hasil prediksi tersebut dihitung nilai Mean Absolute Error (MAE) dihitung selisih antara nilai rating sebenarnya dengan prediksi, dan kemudian diurutkan mulai dari terkecil ke terbesar untuk direkomendasikan kepada user. Hasil dari penelitian menunjukkan kecilnya nilai rata-rata MAE 0,572039 namun untuk proses eksekusi, waktu yang dibutuhkan cukup lama yaitu 6,4 detik. Penelitian berikutnya dapat mengombinasikan pendekatan metode content based filtering dan collaborative filtering atau disebut dengan Item Based Clustering Hybrid Method (ICHM) supaya hasil yang diperoleh lebih baik dan dapat mempersingkat waktu yang dibutuhkan.","PeriodicalId":34236,"journal":{"name":"Jurnal Eksplora Informatika","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Implementasi Metode Item-Based Collaborative Filtering dalam Pemberian Rekomendasi Calon Pembeli Aksesoris Smartphone\",\"authors\":\"B. Prasetyo, Hanny Haryanto, Setia Astuti, Erna Zuni Astuti, Yuniarsi Rahayu\",\"doi\":\"10.30864/eksplora.v9i1.244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flazzstore merupakan sebuah toko yang bergerak dibidang penjualan casing smartphone. Terdapat banyak produk yang berbeda-beda dengan banyak tema yang berbeda pula, hal ini membuat beberapa user kesulitan dalam menentukan pilihan mengenai produk yang akan dipilih. Perlunya sebuah sistem rekomendasi yang mampu memberikan rekomendasi produk kepada user, untuk memudahkan user dalam memilih produk yang akan dibelinya. Penelitian ini menggunakan metode Item-Based Collaborative Filtering, metode ini mencari similarity/kesamaan item dengan item lainnya. Sistem akan mencari rating tiap item dan menghitung nilai similarity menggunakan persamaan pearson correlation-based similarity. Kemudian nilai dari hasil perhitungan similarity akan digunakan untuk menghitung nilai prediksi tiap produk dengan menggunakan persamaan weighted average of deviation. Sebelum direkomendasikan kepada pelanggan dari hasil prediksi tersebut dihitung nilai Mean Absolute Error (MAE) dihitung selisih antara nilai rating sebenarnya dengan prediksi, dan kemudian diurutkan mulai dari terkecil ke terbesar untuk direkomendasikan kepada user. Hasil dari penelitian menunjukkan kecilnya nilai rata-rata MAE 0,572039 namun untuk proses eksekusi, waktu yang dibutuhkan cukup lama yaitu 6,4 detik. Penelitian berikutnya dapat mengombinasikan pendekatan metode content based filtering dan collaborative filtering atau disebut dengan Item Based Clustering Hybrid Method (ICHM) supaya hasil yang diperoleh lebih baik dan dapat mempersingkat waktu yang dibutuhkan.\",\"PeriodicalId\":34236,\"journal\":{\"name\":\"Jurnal Eksplora Informatika\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Eksplora Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30864/eksplora.v9i1.244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Eksplora Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30864/eksplora.v9i1.244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

Flazzstore是一家专门销售智能手机外壳的商店。有许多不同的产品和许多不同的主题,这使得一些用户在选择要选择的产品时遇到困难。需要一个能够为用户提供产品推荐的系统,让用户更容易选择购买的产品。该研究采用基于合作过滤方法,该方法寻找类似于其他项目的项目。系统将搜索每个项目的评级,并使用皮尔逊相关方程来计算相似的值。然后,类似计算结果的值将被用来使用偏差平均方程来计算每个产品的预测值。在将预测结果推荐给客户之前,计算出绝对错误值(MAE)与预测值之间的差异,然后从最小到最大的开始对用户进行推荐。研究结果显示,玫分数为0.572039,但执行时间为6.4秒。接下来的研究可以结合基于过滤和联合过滤的方法,或称为基于混合方法论的方法,以便更好地获得结果,并缩短所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementasi Metode Item-Based Collaborative Filtering dalam Pemberian Rekomendasi Calon Pembeli Aksesoris Smartphone
Flazzstore merupakan sebuah toko yang bergerak dibidang penjualan casing smartphone. Terdapat banyak produk yang berbeda-beda dengan banyak tema yang berbeda pula, hal ini membuat beberapa user kesulitan dalam menentukan pilihan mengenai produk yang akan dipilih. Perlunya sebuah sistem rekomendasi yang mampu memberikan rekomendasi produk kepada user, untuk memudahkan user dalam memilih produk yang akan dibelinya. Penelitian ini menggunakan metode Item-Based Collaborative Filtering, metode ini mencari similarity/kesamaan item dengan item lainnya. Sistem akan mencari rating tiap item dan menghitung nilai similarity menggunakan persamaan pearson correlation-based similarity. Kemudian nilai dari hasil perhitungan similarity akan digunakan untuk menghitung nilai prediksi tiap produk dengan menggunakan persamaan weighted average of deviation. Sebelum direkomendasikan kepada pelanggan dari hasil prediksi tersebut dihitung nilai Mean Absolute Error (MAE) dihitung selisih antara nilai rating sebenarnya dengan prediksi, dan kemudian diurutkan mulai dari terkecil ke terbesar untuk direkomendasikan kepada user. Hasil dari penelitian menunjukkan kecilnya nilai rata-rata MAE 0,572039 namun untuk proses eksekusi, waktu yang dibutuhkan cukup lama yaitu 6,4 detik. Penelitian berikutnya dapat mengombinasikan pendekatan metode content based filtering dan collaborative filtering atau disebut dengan Item Based Clustering Hybrid Method (ICHM) supaya hasil yang diperoleh lebih baik dan dapat mempersingkat waktu yang dibutuhkan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信