n阶导数的数值逼近

Yong Jiang, Yu Dai, Yumei Li
{"title":"n阶导数的数值逼近","authors":"Yong Jiang, Yu Dai, Yumei Li","doi":"10.1109/ICIC.2011.82","DOIUrl":null,"url":null,"abstract":"Continuing the work of [1], this paper considers mainly the approximation to the n-th derivatives of functions, and develops an effective algorithm with its convergence and error estimate by the method of numerical integration. As an application, the algorithm is used to evaluate the integration of highly oscillatory functions and proves efficient.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Approximation to the n-th Derivatives\",\"authors\":\"Yong Jiang, Yu Dai, Yumei Li\",\"doi\":\"10.1109/ICIC.2011.82\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuing the work of [1], this paper considers mainly the approximation to the n-th derivatives of functions, and develops an effective algorithm with its convergence and error estimate by the method of numerical integration. As an application, the algorithm is used to evaluate the integration of highly oscillatory functions and proves efficient.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.82\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文继承[1]的工作,主要考虑函数n阶导数的逼近问题,并利用数值积分的方法,提出了一种有效的算法,具有收敛性和误差估计。作为一个应用,该算法用于求解高振荡函数的积分,证明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Approximation to the n-th Derivatives
Continuing the work of [1], this paper considers mainly the approximation to the n-th derivatives of functions, and develops an effective algorithm with its convergence and error estimate by the method of numerical integration. As an application, the algorithm is used to evaluate the integration of highly oscillatory functions and proves efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信