Kähler流形上拉普拉斯算子第一个特征值的下界

Xiaolong Li, Kui Wang
{"title":"Kähler流形上拉普拉斯算子第一个特征值的下界","authors":"Xiaolong Li, Kui Wang","doi":"10.1090/tran/8434","DOIUrl":null,"url":null,"abstract":"We establish lower bound for the first nonzero eigenvalue of the Laplacian on a closed K\\\"ahler manifold in terms of dimension, diameter, and lower bounds of holomorphic sectional curvature and orthogonal Ricci curvature. On compact K\\\"ahler manifolds with boundary, we prove lower bounds for the first nonzero Neumann or Dirichlet eigenvalue in terms of geometric data. Our results are K\\\"ahler analogues of well-known results for Riemannian manifolds.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lower bounds for the first eigenvalue of the Laplacian on Kähler manifolds\",\"authors\":\"Xiaolong Li, Kui Wang\",\"doi\":\"10.1090/tran/8434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish lower bound for the first nonzero eigenvalue of the Laplacian on a closed K\\\\\\\"ahler manifold in terms of dimension, diameter, and lower bounds of holomorphic sectional curvature and orthogonal Ricci curvature. On compact K\\\\\\\"ahler manifolds with boundary, we prove lower bounds for the first nonzero Neumann or Dirichlet eigenvalue in terms of geometric data. Our results are K\\\\\\\"ahler analogues of well-known results for Riemannian manifolds.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tran/8434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文从维数、直径、全纯截面曲率和正交Ricci曲率下界等方面建立了闭K\ ahler流形上拉普拉斯算子第一个非零特征值的下界。在有边界的紧态K\ ahler流形上,用几何数据证明了第一个非零诺伊曼或狄利克雷特征值的下界。我们的结果是已知黎曼流形结果的K\ ahler类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lower bounds for the first eigenvalue of the Laplacian on Kähler manifolds
We establish lower bound for the first nonzero eigenvalue of the Laplacian on a closed K\"ahler manifold in terms of dimension, diameter, and lower bounds of holomorphic sectional curvature and orthogonal Ricci curvature. On compact K\"ahler manifolds with boundary, we prove lower bounds for the first nonzero Neumann or Dirichlet eigenvalue in terms of geometric data. Our results are K\"ahler analogues of well-known results for Riemannian manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信