抽样混合整数优化问题的顺序深度学习算法

M. Chamanbaz, Roland Bouffanais
{"title":"抽样混合整数优化问题的顺序深度学习算法","authors":"M. Chamanbaz, Roland Bouffanais","doi":"10.48550/arXiv.2301.10703","DOIUrl":null,"url":null,"abstract":"Mixed-integer optimisation problems can be computationally challenging. Here, we introduce and analyse two efficient algorithms with a specific sequential design that are aimed at dealing with sampled problems within this class. At each iteration step of both algorithms, we first test the feasibility of a given test solution for each and every constraint associated with the sampled optimisation at hand, while also identifying those constraints that are violated. Subsequently, an optimisation problem is constructed with a constraint set consisting of the current basis -- namely, the smallest set of constraints that fully specifies the current test solution -- as well as constraints related to a limited number of the identified violating samples. We show that both algorithms exhibit finite-time convergence towards the optimal solution. Algorithm 2 features a neural network classifier that notably improves the computational performance compared to Algorithm 1. We quantitatively establish these algorithms' efficacy through three numerical tests: robust optimal power flow, robust unit commitment, and robust random mixed-integer linear program.","PeriodicalId":13641,"journal":{"name":"Inf. Sci.","volume":"145 1","pages":"73-84"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Sequential Deep Learning Algorithm for Sampled Mixed-integer Optimisation Problems\",\"authors\":\"M. Chamanbaz, Roland Bouffanais\",\"doi\":\"10.48550/arXiv.2301.10703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed-integer optimisation problems can be computationally challenging. Here, we introduce and analyse two efficient algorithms with a specific sequential design that are aimed at dealing with sampled problems within this class. At each iteration step of both algorithms, we first test the feasibility of a given test solution for each and every constraint associated with the sampled optimisation at hand, while also identifying those constraints that are violated. Subsequently, an optimisation problem is constructed with a constraint set consisting of the current basis -- namely, the smallest set of constraints that fully specifies the current test solution -- as well as constraints related to a limited number of the identified violating samples. We show that both algorithms exhibit finite-time convergence towards the optimal solution. Algorithm 2 features a neural network classifier that notably improves the computational performance compared to Algorithm 1. We quantitatively establish these algorithms' efficacy through three numerical tests: robust optimal power flow, robust unit commitment, and robust random mixed-integer linear program.\",\"PeriodicalId\":13641,\"journal\":{\"name\":\"Inf. Sci.\",\"volume\":\"145 1\",\"pages\":\"73-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2301.10703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.10703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

混合整数优化问题在计算上具有挑战性。在这里,我们介绍并分析了两种有效的算法,它们具有特定的顺序设计,旨在处理该类中的采样问题。在这两种算法的每次迭代步骤中,我们首先测试给定测试解决方案的可行性,这些解决方案与手头的采样优化相关的每个约束,同时也识别那些被违反的约束。随后,一个优化问题是用一个约束集构造的,该约束集由当前基础组成——即,完全指定当前测试解决方案的最小约束集——以及与有限数量的已识别的违规样本相关的约束。我们证明了这两种算法对最优解都具有有限时间收敛性。算法2的特征是一个神经网络分类器,与算法1相比,它显著提高了计算性能。通过鲁棒最优潮流、鲁棒机组承诺和鲁棒随机混合整数线性规划三个数值试验,定量地验证了这些算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sequential Deep Learning Algorithm for Sampled Mixed-integer Optimisation Problems
Mixed-integer optimisation problems can be computationally challenging. Here, we introduce and analyse two efficient algorithms with a specific sequential design that are aimed at dealing with sampled problems within this class. At each iteration step of both algorithms, we first test the feasibility of a given test solution for each and every constraint associated with the sampled optimisation at hand, while also identifying those constraints that are violated. Subsequently, an optimisation problem is constructed with a constraint set consisting of the current basis -- namely, the smallest set of constraints that fully specifies the current test solution -- as well as constraints related to a limited number of the identified violating samples. We show that both algorithms exhibit finite-time convergence towards the optimal solution. Algorithm 2 features a neural network classifier that notably improves the computational performance compared to Algorithm 1. We quantitatively establish these algorithms' efficacy through three numerical tests: robust optimal power flow, robust unit commitment, and robust random mixed-integer linear program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信