符号动力尺度:模式、轨道和横向

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ricardo Gómez Aíza
{"title":"符号动力尺度:模式、轨道和横向","authors":"Ricardo Gómez Aíza","doi":"10.1080/17459737.2021.1953169","DOIUrl":null,"url":null,"abstract":"We study classes of musical scales obtained from shift spaces in symbolic dynamics through the first symbol rule, which yields scales in any n-TET tuning system. The modes are thought as elements of orbit equivalence classes of cyclic shift actions on languages, and we study their orbitals and transversals. We present explicit formulations of the generating functions that allow us to deduce the orbital and transversal dimensions of classes of musical scales generated by vertex shifts, for all n, in particular for the 12-TET tuning system.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symbolic dynamical scales: modes, orbitals, and transversals\",\"authors\":\"Ricardo Gómez Aíza\",\"doi\":\"10.1080/17459737.2021.1953169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study classes of musical scales obtained from shift spaces in symbolic dynamics through the first symbol rule, which yields scales in any n-TET tuning system. The modes are thought as elements of orbit equivalence classes of cyclic shift actions on languages, and we study their orbitals and transversals. We present explicit formulations of the generating functions that allow us to deduce the orbital and transversal dimensions of classes of musical scales generated by vertex shifts, for all n, in particular for the 12-TET tuning system.\",\"PeriodicalId\":50138,\"journal\":{\"name\":\"Journal of Mathematics and Music\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics and Music\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/17459737.2021.1953169\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2021.1953169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究了符号动力学中从移位空间中得到的音阶类,通过第一符号规则,它产生了任何n-TET调谐系统的音阶。这些模态被认为是语言上循环移位作用的轨道等价类的元素,我们研究了它们的轨道和截线。我们提出了生成函数的显式公式,使我们能够推导出由顶点移位生成的音乐音阶类的轨道和横向维度,对于所有n,特别是对于12-TET调谐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic dynamical scales: modes, orbitals, and transversals
We study classes of musical scales obtained from shift spaces in symbolic dynamics through the first symbol rule, which yields scales in any n-TET tuning system. The modes are thought as elements of orbit equivalence classes of cyclic shift actions on languages, and we study their orbitals and transversals. We present explicit formulations of the generating functions that allow us to deduce the orbital and transversal dimensions of classes of musical scales generated by vertex shifts, for all n, in particular for the 12-TET tuning system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信