DFGA:利用现代深度学习技术从RGB视频中生成数字人脸和动画

Diqiong Jiang, Li You, Jian Chang, Ruofeng Tong
{"title":"DFGA:利用现代深度学习技术从RGB视频中生成数字人脸和动画","authors":"Diqiong Jiang, Li You, Jian Chang, Ruofeng Tong","doi":"10.2312/pg.20221249","DOIUrl":null,"url":null,"abstract":"High-quality and personalized digital human faces have been widely used in media and entertainment, from film and game production to virtual reality. However, the existing technology of generating digital faces requires extremely intensive labor, which prevents the large-scale popularization of digital face technology. In order to tackle this problem, the proposed research will investigate deep learning-based facial modeling and animation technologies to 1) create personalized face geometry from a single image, including the recognizable neutral face shape and believable personalized blendshapes; (2) generate personalized production-level facial skin textures from a video or image sequence; (3) automatically drive and animate a 3D target avatar by an actor’s 2D facial video or audio. Our innovation is to achieve these tasks both efficiently and precisely by using the end-to-end framework with modern deep learning technology (StyleGAN, Transformer, NeRF).","PeriodicalId":88304,"journal":{"name":"Proceedings. Pacific Conference on Computer Graphics and Applications","volume":"55 1","pages":"63-64"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology\",\"authors\":\"Diqiong Jiang, Li You, Jian Chang, Ruofeng Tong\",\"doi\":\"10.2312/pg.20221249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-quality and personalized digital human faces have been widely used in media and entertainment, from film and game production to virtual reality. However, the existing technology of generating digital faces requires extremely intensive labor, which prevents the large-scale popularization of digital face technology. In order to tackle this problem, the proposed research will investigate deep learning-based facial modeling and animation technologies to 1) create personalized face geometry from a single image, including the recognizable neutral face shape and believable personalized blendshapes; (2) generate personalized production-level facial skin textures from a video or image sequence; (3) automatically drive and animate a 3D target avatar by an actor’s 2D facial video or audio. Our innovation is to achieve these tasks both efficiently and precisely by using the end-to-end framework with modern deep learning technology (StyleGAN, Transformer, NeRF).\",\"PeriodicalId\":88304,\"journal\":{\"name\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"volume\":\"55 1\",\"pages\":\"63-64\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/pg.20221249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/pg.20221249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高质量和个性化的数字人脸已广泛应用于媒体和娱乐,从电影和游戏制作到虚拟现实。然而,现有的数字人脸生成技术需要极其密集的劳动,这阻碍了数字人脸技术的大规模普及。为了解决这一问题,本研究将研究基于深度学习的面部建模和动画技术,以1)从单个图像中创建个性化的面部几何形状,包括可识别的中性面部形状和可信的个性化混合形状;(2)从视频或图像序列中生成个性化的生产级面部皮肤纹理;(3)通过演员的2D面部视频或音频自动驱动和动画3D目标化身。我们的创新是通过使用端到端框架和现代深度学习技术(StyleGAN, Transformer, NeRF)高效而精确地实现这些任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFGA: Digital Human Faces Generation and Animation from the RGB Video using Modern Deep Learning Technology
High-quality and personalized digital human faces have been widely used in media and entertainment, from film and game production to virtual reality. However, the existing technology of generating digital faces requires extremely intensive labor, which prevents the large-scale popularization of digital face technology. In order to tackle this problem, the proposed research will investigate deep learning-based facial modeling and animation technologies to 1) create personalized face geometry from a single image, including the recognizable neutral face shape and believable personalized blendshapes; (2) generate personalized production-level facial skin textures from a video or image sequence; (3) automatically drive and animate a 3D target avatar by an actor’s 2D facial video or audio. Our innovation is to achieve these tasks both efficiently and precisely by using the end-to-end framework with modern deep learning technology (StyleGAN, Transformer, NeRF).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信