{"title":"基于自旋玻璃和氢化非晶硅的多芯片到晶圆三维集成工艺的临时键合和脱键","authors":"M. Murugesan, T. Fukushima, M. Koyanagi","doi":"10.1109/ECTC.2017.253","DOIUrl":null,"url":null,"abstract":"Temporary bonding and de-bonding techniques using respectively spin-on glass (SOG) and hydrogenated amorphous-Si (a-Si:H) have been examined for multichip-to-wafer three-dimensional (3D) integration process. In this study, a 280 um-thick known good dies of 5 mm × 5 mm in size were temporarily bonded to a pre-deposited (a-Si:H (100 nm) and SOG (400 nm)) support glass wafer. After completing the die thinning and TSV formation processes, the dies were de-bonded using 248 nm excimer laser. The surfaces of de-bonded chip/wafer and glass substrate were meticulously investigated using x-ray photoelectron spectroscopy (XPS). From C1s, O1s, and Si1s XPS data, it is inferred that the de-bonding occurs in the a-Si:H layer. It reveals that the interface between the SOG and a-Si:H layer was highly intact, and the bonding strength is good enough to withstand the harsh environment during die/wafer thinning and TSV formation processes.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"22 1","pages":"1237-1242"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporary Bonding and De-Bonding for Multichip-to-Wafer 3D Integration Process Using Spin-on Glass and Hydrogenated Amorphous Si\",\"authors\":\"M. Murugesan, T. Fukushima, M. Koyanagi\",\"doi\":\"10.1109/ECTC.2017.253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporary bonding and de-bonding techniques using respectively spin-on glass (SOG) and hydrogenated amorphous-Si (a-Si:H) have been examined for multichip-to-wafer three-dimensional (3D) integration process. In this study, a 280 um-thick known good dies of 5 mm × 5 mm in size were temporarily bonded to a pre-deposited (a-Si:H (100 nm) and SOG (400 nm)) support glass wafer. After completing the die thinning and TSV formation processes, the dies were de-bonded using 248 nm excimer laser. The surfaces of de-bonded chip/wafer and glass substrate were meticulously investigated using x-ray photoelectron spectroscopy (XPS). From C1s, O1s, and Si1s XPS data, it is inferred that the de-bonding occurs in the a-Si:H layer. It reveals that the interface between the SOG and a-Si:H layer was highly intact, and the bonding strength is good enough to withstand the harsh environment during die/wafer thinning and TSV formation processes.\",\"PeriodicalId\":6557,\"journal\":{\"name\":\"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"22 1\",\"pages\":\"1237-1242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2017.253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporary Bonding and De-Bonding for Multichip-to-Wafer 3D Integration Process Using Spin-on Glass and Hydrogenated Amorphous Si
Temporary bonding and de-bonding techniques using respectively spin-on glass (SOG) and hydrogenated amorphous-Si (a-Si:H) have been examined for multichip-to-wafer three-dimensional (3D) integration process. In this study, a 280 um-thick known good dies of 5 mm × 5 mm in size were temporarily bonded to a pre-deposited (a-Si:H (100 nm) and SOG (400 nm)) support glass wafer. After completing the die thinning and TSV formation processes, the dies were de-bonded using 248 nm excimer laser. The surfaces of de-bonded chip/wafer and glass substrate were meticulously investigated using x-ray photoelectron spectroscopy (XPS). From C1s, O1s, and Si1s XPS data, it is inferred that the de-bonding occurs in the a-Si:H layer. It reveals that the interface between the SOG and a-Si:H layer was highly intact, and the bonding strength is good enough to withstand the harsh environment during die/wafer thinning and TSV formation processes.